(3.227.235.183) 您好!臺灣時間:2021/04/17 11:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許幼青
研究生(外文):Hsu, Yu-Ching
論文名稱:大鼠動物模式下給予發光二極體照射對骨代謝研究
論文名稱(外文):LED Light Irradiation on Bone Metabolism in Experimental Rat Model
指導教授:林清亮林清亮引用關係史中
指導教授(外文):Lin, Chin-LiangShih, Chung
學位類別:碩士
校院名稱:國防醫學院
系所名稱:生物及解剖學研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:108
中文關鍵詞:骨代謝發光二極體骨形成骨吸收
外文關鍵詞:bone metabolismLEDbone formationbone resorption
相關次數:
  • 被引用被引用:2
  • 點閱點閱:185
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
雷射治療會影響骨頭代謝的情形,所以本實驗主要的目的是在使用高能量發光二極體照射光作用在骨上,看其代謝的情況。本實驗採用4週大的Wistar母鼠。實驗一:使用連續的高能量發光二極體的波長630nm、660nm和880nm等,應用在脛骨近端處,照射時間為每天照射兩次,每次照射十分鐘,持續28天,使用黑色膠布遮住照光當作為對照組,結果顯示給予630nm的發光二極體照射,會抑制骨生長和促進骨吸收,導致引起骨量流失的現象,而在660nm 和850nm的照射組,骨量流失的情況較不明顯。在骨形成速率 (bone formation rate, BFR) 方面,其850nm組在照射處理中較少影響造骨細胞功能。在皮質骨的方面,給予630nm的發光二極體照射其會抑制骨外膜骨生長,促進骨內膜生骨生長;850nm組在照射處理中較少影響骨內膜以及骨外膜之骨生長功能。
實驗二,使用各種釋放模式的發光二極體,看其骨的代謝情形,光源的頻率分別為:連續、高脈衝和低脈衝的發光二極體應用在脛骨近端處,分成兩週和四週,照射時間為每天照射兩次,每次照射十分鐘,使用黑色膠布遮住照光當作為對照組,照射二週後結果顯示,給予各種釋放模式的發光二極體皆會增加骨表面溶蝕率(erosion surface%),然而只有在給予高脈衝的發光二極體會增加骨形成速率和礦物沈積速率(Mineral apposition rate, MAR);照射四週後結果顯示,給予發光二極體光照射仍會增加骨頭溶蝕,但卻較第二週的情況緩和,另一方面,骨形成活性則保持一樣。因此在給予高脈衝的發光二極體四週後,會持續增加骨溶蝕導致和控制組相比較骨量減少20%。在皮質骨的方面,兩週高脈衝的發光二極體照射其會使骨外膜骨生長則減少,但促進骨內膜骨生長。
結論,光處理對骨代謝影響的因素可能與照射發光二極體的波長,刺激的持續時間,脈衝式或連續的釋放模式及骨組織的解剖位置等有關。
Bone metabolism could be affected by several of laser treatments. This study is to determine the bone metabolism with high power light source-light emitter diodes (LED). Female Wistar rats of four weeks old were used. Experiment Ι: Continuous released light source of 630, 660 and 850nm of high power LED were applied on proximal tibia twice a day for 4 weeks in the experimental group; whereas shed LED light with black tape was applied as sham control. The results showed that 630nm LED irradiation inhibited bone formation and increase bone resorption, and further caused bone volume loss, nevertheless in 850nm and 660nm groups bone volume was preserved. In view of bone formation rate, 850nm group was the group that least affect osteoblast function among these irradiation treatment. At cortical bone, the results showed that 630nm LED irradiation inhibited periosteum bone formation but increased endosteum bone formation. 850nm group was the group that least affected periosteum and bone endosteum formation among these irradiation treatment.
ExperimentⅡ was to determine the bone metabolism with various released modes of LED light. Released light source with frequency: continuous, high pulse, low pulse of LED will be applied on proximal tibia for two weeks and four weeks period respectively; whereas shed LED light will be applied as sham control. The results of ExperimentⅡ showed that after two weeks of irradiation, all LED treated groups bone resoption increased, whereas increased bone formation rate, and mineral apposition rate observed in only high pulse LED group. However after four weeks of irradiation, the increased bone resoption observed in these LED treated two weeks groups, were decelerated, but still higher than that of control group. On the other hand, bone formation activity remains the same among these groups. The dramatic increased bone resorption in high pulsed LED leaded to bone volume loss (20%) than that of control group. At cortical bone, after two weeks of irradiation, periosteum bone formation increased but endosteum bone formation decreased.
In conclusion, there are differential responses of bone metabolism toward different factors, such as wavelength of LED irradiation, early or late response, pulsed or continuous released modes and anatomical site of bone.
目錄
頁次
目錄……………………………………………………………………..Ι
表目錄……………………………………………………………….. Ⅶ
圖目錄…………………………………………………………………. Ⅷ
附錄…………………………………………………………………ⅩⅢ
中文摘要……………………………………………………………ⅩⅣ
英文摘要……………………………………………………………ⅩⅥ
第一章 緒言……………………………………………………………..1
 第一節 骨…………………………………………………………..1
壹、骨組織之構造…………………………………………….1
貳、骨的發育………………………………………………….2
參、骨再重塑作用…………………………………………….4
第二節 光的特性…………………………………………………6
壹、光照射組織的現象………………………………………..6
貳、組織接受光照射後的效應………………………………..7
一、初級作用(primary effects mechanisms) …………7
二、次級作用(secondary effects mechanisms) …………9
第三節 雷射作用在骨組織………………………………………10
 壹、雷射作用在纖維母細胞…………………………………10
貳、雷射作用在骨組織……………………………………..11
 一、體外實驗…………………………………………….11
 二、動物模式……………………………………………13
第四節 發光二極體(Light-Emitting diode,LED) ……………….15
壹、何謂二極體(diode) ………………………………………15
貳、發光二極體基本原理……………………………………15
第五節 發光二極體之應用………………….…………………...17
壹、發光二極體歷史…………………………………………17
貳、發光二極體實驗…………………………………………18
研究目的………………………………………………………………..19
第二章 材料與方法……………………………………………………21
第一節 實驗材料…………………………………………………21
壹、實驗動物…………………………………………………21
貳、發光二極體………………………………………….…21
第二節 實驗設計與方法…………………………………………22
壹、實驗設計…………………………………………………22
貳、實驗方法…………………………………………………24
一、骨螢光標示劑………………………………………24
二、動物灌流……………………………………………24
三、非脫鈣標本的製作…………………………………25
(一)、標本處理……………………………………25
(二)、包埋………………………………………….25
(三)、 切片…………………………………………26
(四)、染色……………………………………….26
參、計量方法…………………………………………………27
一、骨質密度測定………………………………………27
二、骨骼生長狀況之測定………………………………27
三、骨組織形態學的計量………………………………27
肆、統計分析…………………………………………………29
第三章 結果………………………………………………………….30第一節 骨成長狀況情形………………………………..………30
壹、實驗Ⅰ不同波長實驗……………………………………30
貳、實驗Ⅱ不同能量釋放模式之脈衝實驗…………………30
第二節 脛骨骨組織型態測量學…………………………….…..31
壹、實驗Ⅰ不同波長實驗…………………………………..31
一、脛骨軟骨骨化情形………………………….………31
二、近側脛骨幹骺端骨小樑情形……………………….31
1、近側脛骨幹骺端骨小樑骨量情形……………...31
2、近側脛骨幹骺端骨小樑結構情形……………...32
3、近側脛骨幹骺端骨小樑單位面積內兩條螢光帶區域所占面積情形……….......................32
4、近側脛骨幹骺端骨小樑礦物沈積速率……….33
5、近側脛骨幹骺端骨小樑單位面積內類骨質區域所占面積情形……………………………….33
6、近側脛骨幹骺端骨小樑骨形成速率情形..…….33
7、近側脛骨幹骺端骨小樑單位面積內溶蝕區域所占面積情形……………………………..……..33
三、骨幹端皮質骨情形………………………………….34
1、骨幹端皮質骨面積情形………………………...34
2、骨幹端骨外膜之兩條螢光帶佔骨表面百分比情形………………………….…………….……..34
3、骨幹端骨外膜之礦物化沈積速度率情形……...34
4、骨幹端骨外膜之骨形成速率情形……………...35
5、骨幹端骨內膜之兩條螢光帶佔骨表面百分比情形………………………………………………35
6、骨幹端骨內膜之礦物化沈積速度率情形………………………………………………35
7、骨幹端骨內膜之骨形成速率情形……………...35
8、皮質骨之骨形成速率情形………………….…..36
貳、實驗Ⅱ不同的能量釋放模式脈衝實驗…………………36
一、脛骨軟骨骨化情形……………………….…………36
二、近側脛骨幹骺端骨小樑情形……………………….37
1、近側脛骨幹骺端骨小樑情形………………...…37
2、近側脛骨幹骺端骨小樑結構情形……………37
3、近側脛骨幹骺端骨小樑單位面積內兩條螢光帶區域所占面積情形………................................38
4、近側脛骨幹骺端骨小樑礦物沈積速率………...39
5、近側脛骨幹骺端骨小樑單位面積內類骨質區域所占面積情形……………….………………39
6、近側脛骨幹骺端骨小樑骨形成速率情形...……40
7、近側脛骨幹骺端骨小樑單位面積內溶蝕區域所占面積情形…………………………………..40
三、骨幹端皮質骨情形………………………………….41
1、骨幹端皮質骨面積情形………………………...41
2、骨幹端骨外膜之兩條螢光帶佔骨表面百分比情形………………………….……………….…..41
3、骨幹端骨外膜之礦物化沈積速度率情形…...…42
4、骨幹端骨外膜之骨形成速率情形……………...42
5、骨幹端骨內膜之兩條螢光帶佔骨表面百分比情形………………………………………………43
6、骨幹端骨內膜之礦物化沈積速度率情形……43
7、骨幹端骨內膜之骨形成速率情形……………...44
8、皮質骨之骨形成速率情形……………………...44
第四章 討論…………………………………………………………45
第五章 結論……………………………………………………………53
參考文獻………………………………………………………………..98











表目錄
頁次
表一、不同波長對脛骨之影響…………………………………………54
表二、不同波長對骨密度之影響……………………….……….……..55
表三、不同能量釋放方式對脛骨之影響………………….…….……..56
表四、不同能量釋放方式對骨密度之影響……………………...…….57


















圖目錄
頁次
圖一、施予發光二極體照射後對老鼠近側脛骨軟骨縱向生長速率統計圖........................................................................................………58
圖二、施予發光二極體照射後對老鼠近側脛骨生長板厚度統計圖…………………………………………………………………59
圖三、施予發光二極體照射後對老鼠近側脛骨生長板軟骨細胞平均高度統計圖…………………………………………………………60
圖四、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑骨量統計圖…………………………………………………………………61
圖五、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑平均厚度統計圖……………………………………………………………62
圖六、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑平均數目統計圖………………………………………………………........63
圖七、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑平均間隙統計圖............................................................................................64
圖八、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑兩條螢光帶佔骨表面百分比統計圖………………………………………65
圖九、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑礦物化沈積速度率統計圖…………………………………………………66
圖十、施予發光二極體照射後對老鼠近側脛骨幹骺端小樑骨單位面積類骨質所佔面積百分比統計圖…………………………………67
圖十一、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑骨形成速率統計圖………………………………………………………68
圖十二、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑單位面積內溶蝕區域所佔表面百分比統計圖…………………...…….69
圖十三、施予發光二極體照射後對老鼠脛骨骨幹端皮質骨面積統計圖…………………………………………………………………70
圖十四、施予發光二極體照射後對老鼠脛骨骨幹端骨外膜之兩條螢光帶佔骨表面百分比統計圖………………………………………71
圖十五、施予發光二極體照射後對老鼠脛骨骨幹端骨外膜之礦物化沈積速度率統計圖…………………………………………………72
圖十六、施予發光二極體照射後對老鼠脛骨骨幹端骨外膜之骨形成速率統計圖…………………………………………………………73
圖十七、施予發光二極體照射後對老鼠脛骨骨幹端骨內膜之兩條螢光帶佔骨表面百分比統計圖………………………………………74
圖十八、施予發光二極體照射後對老鼠脛骨骨幹端骨內膜之礦物化沈積速度率統計圖…………………………………………………75
圖十九、施予發光二極體照射後對老鼠脛骨骨幹端骨內膜之骨形成速率統計圖…………………………………………………………76
圖二十、施予發光二極體照射後對老鼠脛骨骨幹端皮質骨之骨內膜加上骨外膜之骨形成速率統計圖…………………………………77
圖二十一、施予發光二極體照射後對老鼠軟骨縱向生長速率統計圖…………………………………………………………………78
圖二十二、施予發光二極體照射後對老鼠近側脛骨生長板厚度統計圖…………………………………………………………………79
圖二十三、施予發光二極體照射後對老鼠近側脛骨生長板軟骨細胞平均高度統計圖……………………………………………………80
圖二十四、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑骨量統計圖……………………………………………………………81
圖二十五、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑平均厚度統計圖………………………………………………………82
圖二十六、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑平均數目統計圖………………………………………………………83
圖二十七、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑平均間隙統計圖………………………………………………………84
圖二十八、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑兩條螢光帶佔骨表面百分比統計圖…………………………………85
圖二十九、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑礦物化沈積速度率統計圖……………………………………………86
圖三十、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑單位骨表面類骨質所佔表面百分比統計圖……………………………87
圖三十一、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑骨形成速率統計圖……………………………………………………88
圖三十二、施予發光二極體照射後對老鼠近側脛骨幹骺端骨小樑骨表面內溶蝕區域所佔表面統計圖………………………………..89
圖三十三、施予發光二極體照射後對老鼠脛骨骨幹端皮質骨面積統計圖…………………………………………………………………90
圖三十四、施予發光二極體照射後對老鼠脛骨骨幹端骨外膜之兩條螢光帶佔骨表面百分比統計圖……………………………………91
圖三十五、施予發光二極體照射後對老鼠脛骨幹骺端骨外膜之礦物化沈積速度率統計圖………………………………………………92
圖三十六、施予發光二極體照射後對老鼠脛骨幹骺端骨外膜之骨形成速率統計圖………………………………………………………93
圖三十七、施予發光二極體照射後對老鼠脛骨骨幹端骨內膜之兩條螢光帶佔骨表面百分比統計圖……………………………………94
圖三十八、施予發光二極體照射後對老鼠脛骨幹骺端骨內膜之礦物化沈積速度率統計圖………………………………………………95
圖三十九、施予發光二極體照射後對老鼠脛骨骨幹端骨內膜之骨形成速率統計圖………………………………………………………96
圖四十、施予發光二極體照射後對老鼠脛骨骨幹端皮質骨之骨內膜加上骨外膜之骨形成速率統計圖…………………………………97


















附錄
附錄一、骨密度測定圖
附錄二、半自動影像分析系統
附錄三、穿透率及反射率光譜儀對大白鼠小腿穿透率圖
附錄四、電動線鋸
附錄五、滑走式硬組織切片機
附錄六、生長板的厚度以及軟骨細胞高度
附錄七、破骨細胞
附錄八、兩條螢光帶的百分比以及礦物沉積速率
附錄九、造骨細胞和類骨質
附錄十、近紅外光吸收頻譜
附錄十一、Osteomeasure 3.0版
Adar F, Jonetani T. Resonance Raman spectra of cytochrome oxidase. Evidence for photoreduction by laser photons in resonance with the Soret band. Biochem Biophys Acta, 502: 80-86, 1978.

Abergel RP, Meeker CA, Lam TS, Dwyer RM, Lesavoy MA, Uitto J. Control of connective tissue metabolism by lasers: recent developments and future prospects. J Am Acad Dermatol, 11: 1142-1150, 1984.

Abergel RP, Lyons RF, Castel JC. Biostimulation of wound healing by lasers: experimental approaches in animal models and in fibroblast cultures. J Dermatol Surg Oncol, 13: 127-133, 1987.

Almeida LL, Rigau J, Zangaro RA,Guidugli NJ, Jaeger MMM. Comparison of the low gingival fibroblasts proliferation using different irradiance and same fluence. Laser Surg Med, 29: 179-184, 2001.

Aihara N, Yamaguchi M, Kasai K. Low-energy irradiation stimulates formulates formation of osteoclast-like cells via RANK expression in vitro. Lasers Med Sci, 2005.

Braverman B, McCarthy RJ, Ivankovich AD, Frode DE, Overfield M, Bapna MS. Effect of Helium-Neon and infrared laser irradiation on wound healing in rabbits. Lasers Surg Med, 9: 50-58, 1989.

Bonewald LF, Mundy GR. Role of transforming growth factor beta in bone remodeling. Clin Orthop Rel Res, 250: 261-276, 1990.

Braushka O, Yaakobi T, Oron U. Effect of low-energy laser (He-Ne) irradiation on the process of bone repair in the rat tibia. Bone, 16: 47-55, 1995.

Conlan MJ, Rapley JW, Cobb CM. Biostimulation of wound healing by low-energy laser irradiation. J Clin Periodont, 23: 492-496, 1996.

Dekel S, Salama R, Edelstein S. The effect of vitamin D and its metabolites on fracture repair in chicks. Clin Sci, 65: 429-436, 1983.

Danilov VP, Zakharov SD, Ianov AV. Photodynamic cell injury in red and IR absorption peaks of endogeneous oxygen, Dokl Akad Nauk SSSR (Moscow), 311: 1255-1258, 1990.

Dortbudak O, Haas R, Mallath-Pokorny G. Biostimulation of bone marrow cells with a diode soft laser. Clin Oral Implants Res, 11: 540-545, 2000.

Dierickx CC, Anderson RR. Visible light treatment of photoaging. Dermatol Ther, 18: 191-208, 2005.

Epel BL. Inhibition of growth and respiratory by visible and near ultraviolet light, in: A.C. Giese. (Ed.) Photophysiol, 8: pp 209-229, 1973.

Friedmann H, Lubart R, Laulicht I. A possible explanation of laser-induced stimulation and damage of cell cultures. J Photochem Photobiol B: Biol, 11: 87-95, 1991.

Frost HM. From wolff’s low to the utah paradigm: insights about bone physiology and its clinical applications. The Anatomical Record, 262: 398-419, 2001.

Gordon SA, Surrey K. Red and far-red light action on oxidative phosphorylation. Radiat Res, 12: 325-339, 1960.

Ghamsari SM, Taguchi K, Abe N, Acorda JA, Sato M, Yamada H. Evaluation of low level laser therapy on primary healing of experimentally induced full thickness teat wounds in dairy cattle. Vet Surg, 26: 114-120, 1997.

Garavello-Freitas I, Baranausks V, Joazeiro PP, Radovani CR, Dal Pai-Silva M, Cruz-Höfling MAd. Low-power laser irradiation improves histomorphometrical parameters and bone matrix organization during tibia woung healing in rats. J Photochem Photobiol, 70: 81-89, 2003.

Heckman JD, Rayby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low intensity pulsed ultrasound. J Bone Joint Surg, 76-A: 26-341994

Kato M, Shinizawa K, Yoshikawa S. Cytochrome oxidase is a possible photoreceptor in mitochondria. Photobiochem Photobiophys, 2: 263-269, 1981.

Kaneko M, Singal PK, Dhalla NS. Alteration in heart sarcolemmal Ca2+-ATPase and Ca2+-binding activites due to oxygen free radicals. Basic Res Cardiol, 85: 45-54, 1990.

Kemmotsu O, Sato K, Furomido H, Harada K, Takigawa C, Kaseno S. Efficacy of low reactive-level laser therapy for pain attenuation of postherpetic neuralgia, Laser Therapy. 3: 1-75, 1991.

Karu TI, Tiphlova QA, Matveyets YuA, Yartsev AP, Letokhov VS. Comparson of the effects of visible femtosecond laser pulses and continuous wave laser radiation of low average intensity on the clonogenicity of Escherichia coli. J Photochem Photobiol. B: Biol, 10: 339-344, 1991.

Kim CS, Jung J. Inactivation of the respiratory chain in plant mitochondria by visible light: the primary target for photodamage and endogeneous photosensitizing chromophores. J Photochem Photobiol. B: Biol, 29: 135-139, 1995.

Khullar SM, Brodin P, Messelt EB, Haanæs HR. The effects of low level laser treatment on recovery of nerve conduction and motor function after compression injury in the rat sciatic nerve. Euro Oral Sci, 103: 299-305, 1995.

Khullar SM, Emami B, Westermark A, Haanæs HR. Effect of low-leverl laser treatment on neurosensory deficits subsequent to sagittal split ramus osteotomy. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiol & Endodon, 82: 132-138, 1996.

Keenan MJ, Hegsted M, Jones KL, Delany JP, Kime JC, Melancon LE, Tulley RT, Hong KD. Comparion of Bone Density Measurement Techniques: DXA and Archimedes’ Principle. Bone & Min Res, 12: 1903-1907, 1997.

Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol. B: Biol, 49: 1-17, 1999.

Kreisler M, Christoffers A B, Haitham AH, Willershausen B, Hoedt Bd. Low level 809nm diode laser induced In Viro stimulation of the proliferation of human ginfival fibroblasts. Laser in Surg & Med, 30: 365-369, 2002.

Letokhov VS. Effects of transient local heating of spatially and spectrally heterogeneous biotissue by short laser pulses. Nuovo Cimento D, 13: 939-948, 1991.

Luger EJ, Rochkind S, Wollman Y, Kogan G. Effect of low-power laser irradiation on the mechanical properties of bone fracture healing in rats. Lasers Surg Med, 22: 97-102, 1998.

Lubart R, Wollman Y, Friedmann H, Rochkind S, Laulicht I. Effect of visible and near-infrared laser on cell cultures. J Photochem Photobiol. B: Bio, 12: 305-310, 1992.

Leung MC, Lo SC, Siu FK. Treatment of experimentally induced transient cerebral ischemia with low energy laser inhibits nitric oxide synthase activity and up-regulated the expression of transforming growth factor-beta 1. Lasers Surg Med, 31: 283-288, 2002.

Mester E, Mester AF, Mester A. The biomedical effects of laser application. Laser application. Lasers Surg Med, 5: 31-39, 1985.

Murphy JG, Smith TW, Marsh JD. Mechanisms of reoxygenation induced calcium overload in cultured chick embryo heart cells. Am J Physiol, 254: H1133-H1141, 1988.

Marie-Pierre F, Xavier R, Fracoise V, Bénédicte B, Monique A. Differential temperature sensitivity of cultured cells from cartilaginous or bone origin. Bone Cell, 75: 83-87, 1992.

Miyazaki T, Katagiri H, Kanegae Y, Takayangi H, Sawada Y, Yamamotm A, Pando M P, Asano T, Verma IM, Oda H, Nakamura K, Tanaka S. Reciprocal Role of ERK and NF- B Pathways in Survival and Activation of Osteoclasts. J cell Biol, 148: 333-342, 2000.

Masiukiewicz US, Mitnick M, Gulanski BI, Insogna KL. Evidence that the IL-6/IL-6 Soluble Receptor Cytokine System Plays a Role in the Increased Skeletal Sensitivity to PTH in Estrogen-Deficient Women. J Clin Endocrinol Metab, 87: 2892-2898, 2002.

Maawan K, Ståle PL, Hans RH, Kamal M. Effect of laser therapy on attachment, proliferation and differentiation of human osteoblast-like cells cultured on titanium. Biomaterials, 26: 3503-3509, 2005.

Nohl H. A novel superoxide radical generator in heart mitochondria, FEBS Lett, 214: 269-273, 1987.

Nagasawa A, Kato K, Negishi A. Bone regeneration effect of low level lasers including argon laser. Laser Ther, 3: 59–62, 1991.

Nicolan RA, Jorgtti V, Rigau J, Pacheco MTT, Reis LM, Zângaro RA: Effect of low-power GaAlAs laser (660nm) on boen structure and cell activity: an experimental animal study. Laser Med Sci, 18: 89-94, 2003.

Oron U, Yaakobi T, Oron A. Attenuation of infarct size in rat and dogs after myocardial infarction by low-energy laser irradiation. Lasers Surg Med, 28: 204-211, 2001.

Passarella S, Casamassima F, Molinari S, Pastroe D, Quagliariello E, Catalano IM, Cingolani A. Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in virto by He-Ne laser, FEBS Lett, 175: 95-99, 1984.

Pollak D, Floman Y, Simkin A, Avineser A, Freund HR. The effect of protein malnutrition and nutritional support on the mechanical properties of fracture healing in the injured rat. J Parenter Enter Nutr, 10: 564–567, 1986.

Qudri T, Miranda L, Tuner J, Gustaffsson A. The short-term effects of low-level lasers as adjunct therapy in the treatment of periodontal inflammation. J Clin Periodontol, 32: 714-719, 2005.

Riggs BL, Melton LJⅢ. Involutional osteoporosis. New England Med, 314: 1676-1686, 1986.

Shibanuma M, Kuroki T, Nose K. Superoxide as a signal for increase in intracellular pH, J Cell Physiol, 136: 379-383, 1988.

Scott G & King JB. A prospective, double-blind trial of electrical capacitive coupling in the treatment of non-union of long bones. J Bone Joint Surg, 74-A: 920–929, 1992.

Sommer AP, Pinheiro AL, Mester AR. Biostimulatory windows in low intensity laser activation: laser, scanners and NASA’s light emitting diode array system. J Clin Laser Med Surg, 19: 29-33, 2001.

Stein A, Benayahu D, Maltz L, Oron U. Low-Level laser irradiation promotes proliferation and differentiation of human osteoblasts in vitro. Photomed Laser Surg, 23 (2) : 161-166, 2005.

Tang XM, Chai BP. Effect of CO2 laser irradiation on experimental fracture healing: a transmission electron microscopic study. Lasers Surg Med, 6: 346–352, 1986.

Trelles MA, Mayayo E. Bone fracture consolidates faster with low-power laser. Lasers Surg Med, 7: 36–45, 1987.

Tadashi N, Yuuichi M, Taku I, Atsushi Y, Masayoshi W, Tsuyoshi N. High-intensity pulsed laser irradiation accelerates bone formation in metaphyseal trabecular bone in rat femur. J Bone Miner Metab, 21: 67–73, 2003.

Vekshin NL, Mironov GP. Flavin-dependent oxygen uptake in mitochondria under illumination, Biophysics (Moscow), 27: 537-539, 1982.

Vladimirov YA, Osipov AN, Klebanov GI. Photobiological Principles of Therapeutic Applications of Laser Radiation. Biochem (Moscow), 69: (1) 81-90, 2004.

Wheatly DN, Kerr C, Gregory DW. Heat-induced damage to HeLa 53: correlation of viability, permeability, osmosensitivity, phase-contrast light, scanning electron and transmission electron, microscopal findings. Int J Hyperthermia, 5: 145-162, 1989.

Webb C, Dyson M, Lewis WH P. Stimulatory effect of 660nm low level laser energy on hypertrophic scar-derived fibroblasts: possible mechanisms for increase in cell counts. Lasers Surg Med, 22: 294-301, 1998.

Whelan HT, Houle JM, Whelan NT. The NASA light-emitting diode medical program-progress in space flight and terrestrial application. Space Tech Appl Intl Forum, 552: 35-45, 2000.

Whelan HT, Smits RL, Buchmann EV. Effect of NASA light-emitting diode irradiation on wound healing. J Clin Laser Med Surg, 19: 304-314, 2001.

Whelan HT, Connelly JF, Hodgson BD. NASA light-emitting diode for the prevention of oral mucositis in pediatric bone marrow transplant patients. J Clin Laser Med Surg, 20: 319-324, 2002.

Whelan HT, Buchmann EV, Dhokalia A, Kane MP, Whelan NT, Wong-Riley MTT, Eells JT, Gound LJ, Hammamieh R, Das R, Jett M. Effect of NASA light-emitting diode irradiation on molecular changes for wound healing in diabetic mice. J Clin Laser Med Surg, 21: 67-74, 2003.

Webb C, and Dyson M. The effect of 880nm low level laser energy on human fibroblast cell numbers: a possible role in hypertrophic wound healing. J Photochem Photobiol. B: Bio, 70: 39-44, 2003.

Weiss RA, McDaniel DH, Geronemus RG, Weiss MA. Clinical trial of a novel non-termal LED array for reversal of photoaging: clinical, histologic, and surface profilometric results, Lasers Surg Med, 36: 85-91, 2005.

Yamada K. Biological effect of low power laser on clonalosteoblastic cells (MC3T3-E1) . Nippon Seikeigeka Gakkai Zasshi, 65: 787–799, 1991.

Yu W, Naim JO, Lanzafame RJ. The Effect of laser irradiation on the release of bEGF from 3T3 fibroblasts. Phochem Photobiol, 59: 167-170, 1994.

陳德請、吳世揚:光電元件,生物光電工程導論,初版,全華科技圖書股份有限公司,台北市,7之1-7之8頁,2003年。

連心瑜譯:第一部骨質疏鬆是可以預防的,第二章骨骼生長的秘密,女性骨質疏鬆症全書,Miriam E. Nelson & Sarah Wernick著,初版,原水文化,台北市,27-30頁,2001年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔