跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) GMT+8:2024/09/17 18:46
Font Size: Enlarge Font   Word-level reduced   Reset  
Back to format1 :::

Browse Content

 
twitterline
Author:楊式興
Author (Eng.):Shih-Hsing Yang
Title:高濃度氧氣對肺部空氣栓塞後通氣與血流分佈的影響
Title (Eng.):Effect Of Hyperoxia On Ventilation–Perfusion Mismatch In Pulmonary Gas Embolism
Advisor:黃坤崙黃坤崙 author reflink
advisor (eng):Kun-Lun Huang
degree:Master
Institution:國防醫學院
Department:海底醫學研究所
Narrow Field:醫藥衛生學門
Detailed Field:醫學學類
Types of papers:Academic thesis/ dissertation
Publication Year:2006
Graduated Academic Year:94
language:Chinese
number of pages:79
keyword (chi):空氣栓塞肺部空氣栓塞肺部通氣血流分佈多重惰性氣體排除技術螢光微粒分析高濃度氧氣
keyword (eng):air embolismPulmonary air embolismVentilation - perfusion distributioninert gas elimination technologyfluorescent microsphere techniquehyperoxia
Ncl record status:
  • Cited Cited :0
  • HitsHits:455
  • ScoreScore:system iconsystem iconsystem iconsystem iconsystem icon
  • DownloadDownload:36
  • gshot_favorites title msgFav:0
中文摘要
空氣栓塞在高壓氧及海底醫學領域中,是臨床最主要常見治療的適應症之ㄧ。氣泡造成肺部空氣栓塞,最主要會阻塞肺部血流通暢造成缺血及缺氧,另一方面會引發肺損傷。因此,建立一個肺空氣栓塞動物模式,同時探討如何能加速對氣泡的吸收、排除,以降低氣泡對肺部組織的傷害,這是潛水醫學研究中極為重要的課題。本實驗的目的是探討空氣栓塞後肺部通氣及血流分佈的失衡,同時探討給予高濃度氧氣對於空氣栓塞後肺部通氣及血流分佈的失衡。實驗方法是給予兔子靜脈注射空氣0.1mL/min,30分鐘,誘發肺動脈空氣栓塞,利用多重惰性氣體排除技術及螢光微粒分析,分別觀察空氣栓塞前1小時、空氣栓塞時、以及空氣栓塞後2小時,肺部通氣與血流( A/ )分佈及肺血流空間分佈的影響。本實驗結果顯示:在給空氣栓塞30分鐘後動脈血壓降低、右心室收縮壓增加,動脈、混合靜脈氧分壓降低、動脈二氧化碳分壓增加。另外在給空氣栓塞後,呼吸無效腔比例增加、 A/ 分佈偏向high A/ 。以上這些變化在停止空氣栓塞2小時後部份恢復。在給空氣栓塞時,肺相對血流之空間分佈有顯著變化,背側血流明顯增加,而腹側減少;另外尾端到頭端或左右肺的相對血流分佈情形,則無顯著差異。在給空氣栓塞時,每塊肺小塊相對血流有重新分佈的現象,相對血流極度增加或減少的肺小塊數目明顯變多,只有少部分肺區的血流能維持不變。這種血流重分佈的情況在停止栓塞後2小時大部份恢復至原來狀態。高濃度氧氣呼吸明顯降低空氣栓塞後動脈血壓及動脈、混合靜脈氧分壓的變化,也使得空氣栓塞後肺通氣灌流失衡的恢復狀況更為完全。但是,高氧呼吸對空氣栓塞時或栓塞後之肺血流空間重分佈並無明顯影響;而每塊肺小塊相對血流的重新分佈及回復狀況,空氣組與高氧組也無顯著差異。本實驗結論:經由靜脈注射空氣可誘發肺空氣栓塞,使得血流向背侧重新分佈,造成通氣血流分佈失衡。這變化大部分可以在兩小時內恢復至正常範圍。呼吸高濃度氧氣對於空氣栓塞後通氣血流分佈失衡及其恢復速度並無顯著影響。
ABSTRACT
Air embolism is one of the main common clinical therapeutically indications in medical undersea and hyperbaric oxygen therapy. The air bubble causes the lung air embolism, blocks lung blood circulate smooth to ischemia and hypoxia, and will cause the lung damage.So, setting up an animal model of pulmonary air embolism, and discussing how to accelerate the absorption of the bubble , to reduce air bubbles inducing lung injury at the same time is an extremely important subject in dive medical research .

The purpose of the experiment is to investigate air embolism-induced ventilation-perfusion mismatch in the lung, and to evaluate the effect of hyperoxia on ventilation – perfusion mismatch in pulmonary air embolism. Pulmonary artery air embolism in rabbits was induced by intravenous injection of air 0.1mL/min, 30 minutes, Multiple inert gas elimination technology and fluorescent microsphere technique, were used to determine the ventilation – perfusion distribution. The result showed that air embolism 30 minutes reduced the arterial pressure, increased right ventricle systolic pressure, reduced artery and mixes vein oxygen partial pressure, and increased artery carbon dioxide partial pressure. Air embolism also caused increase in dead space and high A/ distribution. The above changes partially recovery after stopping air embolism for two hours. During air embolism, the spatial distribution of the relative blood flow of lung shifted from the ventral side to the dorsal side. Besides there is no significance difference in the relative blood flow of caudal to cranial or lift to right distributing. While giving the air embolism, the relative blood flow of each little lung pieces has the phenomenon of redistributed. The relative blood flow of little lung pieces reduced or increased obviously and only some parts of the lung remained unchanged. The redistribution of relative blood flow recover to the original state mostly in 2 hours after stopping the embolism. The hyperoxia breathing obviously reduced changes of arterial pressure and artery and mixing vein oxygen partial pressure after air embolism. It also caused more complete recovery on ventilation – perfusion mismatch after pulmonary air embolism too.

In summary, intravenous injection of air induce the pulmonary air embolism, make the blood flow distribute into dorsal side and cause ventilation – perfusion mismatch. This change majority can recover to the normal range within two hours. Breathing the hyperoxia influence to ventilation – perfusion mismatch and recover the speed not significance difference after the pulmonary air embolism.
正文目錄
「表」目錄
「圖」目錄
中文摘要
英文摘要
中文摘要 5
ABSTRACT 7
第一章 緒論 9
第二章:實驗材料與方法 17
第三章:研究結果 27
第四章 討論 41
第五章 結論 50
表一 、各組空氣栓塞後血液動力學參數 51
表三之一、各組空氣栓塞後之整體MIGET參數 53
表三之二、各組空氣栓塞後之整體MIGET參數 54
表四、各組空氣栓塞後螢光微粒圖形各方向斜率及變異係數比較 55
表五、 控制組不同情況時間點肺小塊相對血流分佈的相關性 56
圖一、空氣組MIGET通氣灌流分佈曲線圖 57
圖二、50% O2組MIGET通氣灌流分佈曲線圖 58
圖三、100% O2組MIGET通氣灌流分佈曲線圖 59
圖四、控制組肺小塊相對血流分佈之離散性 60
圖五、空氣組空氣栓塞與栓塞後2小時肺小塊相對血流分佈離散性 61
圖六、50%O2組空氣栓塞與栓塞後2小時肺小塊相對血流分佈離散性 62
圖七、100%O2組空氣栓塞與栓塞後2小時肺小塊相對血流分佈 63
圖八、各組空氣栓塞後肺背側到腹側肺小塊相對血流分佈狀態 64
圖九、各組空氣栓塞後肺頭側到尾側肺小塊相對血流分佈狀態 65
圖十、控制組所有肺小塊相對血流重新分佈常態分佈圖 66
圖十一、各組空氣栓塞相較於空氣栓塞前肺小塊相對血流 67
圖十二、各組空氣栓塞後2小時相較於空氣栓塞肺小塊相對血流重新分佈比例 68
圖十三、各組空氣栓塞後2小時相較於空氣栓塞前肺小塊相對血流重新分佈比例 69
圖十四、空氣組每塊肺小塊相對血流重新分佈之立體變化 70
圖十五、50% O2組每塊肺小塊相對血流重新分佈之立體變化 71
圖十六、100% O2組每塊肺小塊相對血流重新分佈之立體變化 72
第六章 參考資料: 73
1.Alfaro V ,Roca-Acin J ,Palacios L and Guitart R : Multiple inert gas elimination technique for determining ventilation/perfusion distributions in rat during normoxia, hypoxia and hyperoxia. Clin Exp Pharmacol Physiol. 28: 419-24, 2001.
2.Bandi VD and Munnur MA : Acute lung injury and acute respiratory distress syndrome in pregnancy. Crit Care Clin. 20: 577-607, 2004.
3.Berglund E, Josephson S, and Ovenfors CO : Pulmonary air embolism : Physiological aspects. Progr. Respir. Res. 5: 259-263,1970.
4.Branger AB and Eckmann DM :Theoretical and experimental intravascular gas embolism absorption dynamics. J Appl Physiol 87: 1287-95,1999.
5.Butler BD and Hills BA ; Transpulmonary passage of venous air emboli. J. Appl. Physiol.59:543-547,1985.
6.Chen HF and Kou YR : Vagal and mediator mechanisms underlying the tachypnea caused by pulmonary air embolism in dogs. J Appl Physiol.88: 1247-53,2000.
7.Chen HF, Lee BP and Kou YR : Different roles of two subgroups of lung vagal C-fiber afferents in the tachypneic response to pulmonary air embolism in dogs. Chin J Physiol. 43: 185-90,2000.
8.Deal CW, Fielden BP and Monk I : Hemodynamic effects of pulmonary air embolism. J. Surg. Res. 11:533-538,1971.
9.Deem S, Deem S, McKinney S, Polissar NL, Hedges RG and Swenson ER : Hemodilution during venous gas embolization improves gas exchange, without altering V(A)/Q or pulmonary blood flow distributions. Anesthesiology. 91: 1861-72,1999.
10.Domino KB, Hlastala MP and Cheney FW : Effect of increased intracranial pressure on regional hypoxic pulmonary vasoconstriction. Anesthesiology. 72: 490-5,1990.
11.Domino KB, Hlastala MP, Eisenstein BL and Cheney FW : Effect of regional alveolar hypoxia on gas exchange in dogs. J Appl Physiol. 67: 730-5, 1989.
12.Erasmus JJ, McAdams HP, Rossi S and Kelley MJ : Percutaneous management of intrapulmonary air and fluid collections. Radiol Clin North Am.38:385-93,2000.
13.Flanagan JP, Gradisar IA, Gross RJ and Kelly TR : Air embolus – a lethal complication of subclavian venipuncture. N. Engl. J. Med. 281:488-489,1969.
14.Gilbert JW, Berglund E, Dahlgren S, Ovenfors CO and Barnes R : Experimental pulmonary hypertension in the dog, A preparation involving repeated air embolism. J. Thorac. Cardiovasc. Surg. 55:565-571,1968.
15.Harris RS, Hadian M, Hess DR, Chang Y and Venegas JG : Pulmonary artery occlusion increases the ratio of diffusing capacity for nitric oxide to carbon monoxide in prone sheep. Chest.126:559-65,2004.
16.Hemmerling TM, Schmidt J, Bosert C and Klein P : Systemic air embolism during wedge resection of the lung. Anesth Analg, 93: 1135-6, 2001.
17.Hlastala MP and Robertson HT : Inert gas elimination characteristics of the normal and abnormal lung. J Appl Physiol. 44: 258-66,1978.
18.Hlastala MP, Robertson HT and Ross BK : Gas exchange abnormalities produced by venous gas emboli. Respir Physiol. 36: 1-17, 1979.
19.Hlastala MP, Lamm WJ : Spatial distribution of hypoxic pulmonary vasoconstriction in the supine pig. J Appl Physiol .96: 1589-99, 2004
20.
21.Ho AM : Is emergency thoracotomy always the most appropriate immediate intervention for systemic air embolism after lung trauma? Chest.116: 234-7,1999.
22.Ho AM and Ling E : Systemic air embolism after lung trauma. Anesthesiology,90: 564-75, 1999.
23.Huang KL, Kang BH and Wan FJ : Treatment of pulmonary air embolism with hyperbaric oxygen and isoproterenol in rats. Aviat Space Environ Med. 73: 373-8, 2002.
24.Huang KL and Lin YC : Activation of complement and neutrophils increases vascular permeability during air embolism. Aviat Space Environ Med. 68:300-5,1997.
25.Huang KL, Wu CP, Chen YL, Kang BH and Lin YC : Heat stress attenuates air bubble-induced acute lung injury: a novel mechanism of diving acclimatization. J Appl Physiol. 94: 1485-90, 2003.
26.Josephson S : Pulmonary hemodynamics during experimental air embolism. Scand. J. Clin. Lab. Invest. 115(Suppl.):9-30,1970.
27.Kondo k, O’Reilly Lp and Chiota J : Air embolism associated with an introducer for pulmonary arterial catheters. Anesth. Analg. 63: 871 – 872,1981.
28.Michenfelder JD, Martini JT , Altenburg BM and Rehder K : Air embolism during neurosurgery. JAMA 208: 1353-1358,1969.
29.Masotti L, Ceccarelli E, Cappelli R, Barabesi L and Forconi S : Arterial blood gas analysis and alveolar-arterial oxygen gradient in diagnosis and prognosis of elderly patients with suspected pulmonary embolism. J Gerontol A Biol Sci Med Sci. 55: M761-4,2000.
30.Medby C, Brubakk AO, Myrvold HE : Iatrogenic gas embolism. Tidsskr Nor Laegeforen. 121: 2604-6,2001.
31.Muth CM and Shank ES : Gas embolism. N Engl J Med. 342: 476-82,2000.
32.Melsom MN, Flatebo T Hypoxia and hyperoxia both transiently affect distribution of pulmonary perfusion but not ventilation in awake sheep. Acta Physiol Scand 166: 151-8,1999.
33.
34.Orebaugh SL: Venous air embolism : clinical and experimental considerations. Crit. Care Med, 20:1169-1177,1992.
35.Ogawa Y, Ashizawa K, Hashmi R, Takemoto Y and Hayashi K : Regional ventilation-perfusion mismatch in interstitial pneumonia, Correlation between scintigraphy and CT. Clin Nucl Med, 22: 166-71,1997.
36.Powrie RO, Larson L, Rosene-Montella K, Abarca M, Barbour L, and Trujillo N : Alveolar-arterial oxygen gradient in acute pulmonary embolism in pregnancy. Am J Obstet Gynecol. 178: 394-6,1998.
37.Presson RG, Presson RG, Kirk KR, Haselby KA, Linehan H, Zaleski S, Wagner WW : Fate of air emboli in the pulmonary circulation. J Appl Physiol. 67: 1898-902, 1989.
38.Rawlins R : Traumatic cardiogenic shock due to massive air embolism. A possible role for cardiopulmonary bypass. Eur J Cardiothorac Surg. 22: 845-6, 2002.
39.Schmeck J, Koch T, Patt B, Heller A, Neuhof H and Ackern K : The role of endothelin-1 as a mediator of the pressure response after air embolism in blood perfused lungs. Intensive Care Med. 24: 605-11,1998.
40.Sipos PT, Briand E and Arbutina DR : Can one lung ventilation prevent air embolism in the lung injury victim? Curr Surg. 57: 349-353,2000.
41.Souders JE, Doshier JB, Polissar NL and Hlastala MP : Spatial distribution of venous gas emboli in the lungs. J Appl Physiol. 87:1937-47,1999.
42.Swenson ER, Robertson HT and Hlastala MP : Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Am J Respir Crit Care Med. 149: 1563 -9,1994.
43.Takizawa S, Tokuoka K, Ohnuki Y, Akiyama K, Kobayashi N and Shinohara Y : Chronological changes in cerebral air embolism that occurred during continuous drainage of infected lung bullae. Cerebrovasc Dis. 10: 409-12,2000.
44.Tanus-Santos JE, Gordo WM, Cittadino M and Moreno H : Plasma cGMP levels in air embolism-induced acute lung injury. J Crit Care. 15: 137-41,2000.
45.Tsang JY, Frazer D and Hlastala MP : Ventilation heterogeneity does not change following pulmonary microembolism. J Appl Physiol. 88: 705-12,2000.
46.Tsang JY, Lamm WJ, Starr IR and Hlastala MP : Spatial pattern of ventilation-perfusion mismatch following acute pulmonary thromboembolism in pigs. J Appl Physiol. 98:1862-8,2005.
47.Tsang JY, Tsang JY, Middaugh M, Emery M and Hlastala MP Gas exchange and regional redistribution of pulmonary blood flow during resuscitation of acute pulmonary bead embolization. Pulm Pharmacol. 5:273-8,1992.
48.Walmrath D, Konig R, Ernst C, Bruckner H, Grimminger F and Seeger W : Ventilation-perfusion relationships in isolated blood -free perfused rabbit lungs. J Appl Physiol. 72:374-82, 1992.
49.Wang D, Li MH, Hsu K, Shen CY, Chen HI and Lin YC : Air embolism-induced lung injury in isolated rat lungs. J Appl Physiol. 72: 1235-42,1992.
50.Ward CA, McCullough, Yee D, Stanga D and Fraser WD : Activation of complement at plasma-air or serum-air interface of rabbits. J. Appl. Physiol . 60:1651-1658,1986.
51.West JB : Gas exchange. in : Pulmonary pathophysiology the essentials 6th ed. edited by SUN B, Maryland, Lippincott Williams and Wilkins, USA, 2000, pp.17-36.
52. West JB:Normal physiology: 1st ed. edited by Anthony R, Maryland, Lippincott Williams and Wilkins, USA, 2000.
53.Vik A, Brubakk AO, Hennessy TR, Jenssen BM, Ekker M and Slordahl SA: Venous air embolism in swine ; transport of gas bubbles through the pulmonary circulation. J Appl. Physiol. 69:237-244,1990.
54.Vik A, Jenssen BM, Eftedal O and Brubakk AO: Relationship between venous bubbles and hemodynamic responses after decompression in pigs. Undersea Hyperbar. Med. 20:233-248,1993.
55.Verstappen FTJ, Bernards JA, and Kreuzer F : Effects of pulmonary gas embolism on circulation and respiration in the dog. I.Effect on circulation. Pflugers Arch. 368:89-96,1977.
56.Van Liew HD and Burkard ME :Bubbles in circulating blood: stabilization and simulations of cyclic changes of size and content. J Appl Physiol 79: 1379-85,1995.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
First Page Prev Page Next Page Last Page top
None related articles
 
None related journal articles
 
1. Alteration of regional ventilation/perfusion in Hypoxia
2. Preparation of full-length and EGF-like Domain truncated recombinant human ADAM7
3. Physical and Psychological Symptom Distress with the quality of sleep and relevant factor in Sleep apnea patient
4. The study of Gentamicin sulfate microparticle-hydrogels for topical therapy in excised wound
5. A study on novel anti-inflammatory adjuvants
6. The Study of a Meloxicam Transdermal Formulation
7. p53 Down-regulation May Contribute to Drug Resistance in c-Myc-Overexpressing Mouse Mammary Carcinoma Cell Line
8. Effects of antidepressant on neurogenesis and apoptosis after methamphetamine withdrawal
9. The Effectiveness of Ventilator Weaning Protocol on Patients with Prolonged Mechanical Ventilation Weaning from Ventilator
10. The Life Experience of female relatives of their family member diagnosed with adrenoleukodystrophy
11. Investigation of Successful Extubation and Related Factors in Surgical Intensive Care Unit Patients with Mechanical Ventilator
12. The Study of Sleep Quality and Related Factors in Patients with Chronic Obstructive Pulmonary Disease
13. Generate HLA-A24 Antigen-Presenting Cell for HLA-A24 CTL Peptide Binding Assay & Evaluate the potential role for the novel protein, NRIP, in cervical cancer
14. Development of Japanese Encephalitis Virus Live Attenuated Vaccine and Study of the Roles in Glycoproteins E or NS1 of JEV in Virus-induced ER Stress
15. The effects of modafinil on locomotion and five-choice serial reaction time task
 
system icon system icon