跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2024/12/06 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴媛淑
研究生(外文):Lai yuan shu
論文名稱:探討缺氧所導致活性氧分子生成對頭頸部鱗狀細胞癌的影響
論文名稱(外文):The effects of hypoxia induced Reactive oxygen species production in head & neck squamous cell carcinoma
指導教授:康柏皇
指導教授(外文):Kang BH
學位類別:碩士
校院名稱:國防醫學院
系所名稱:海底醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:88
中文關鍵詞:缺氧活性氧分子頭頸部鱗狀細胞癌
外文關鍵詞:hypoxiareactive oxygen species
相關次數:
  • 被引用被引用:0
  • 點閱點閱:565
  • 評分評分:
  • 下載下載:195
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要
惡性腫瘤(癌症)已是國人死亡十大原因的首位,是影響國人健康的重要因素。癌症細胞的特性是以異常之速度分化成長,並能克服腫瘤體積增加導致之組織內部及細胞缺氧,而繼續存活生長。目前之研究顯示缺氧可造成缺氧誘發因子-1 alpha(hypoxia-inducible factor-1α, HIF-1α)之穩定/活化,HIF -1α可引起血管內皮生長因子(vascular endothelial growth factor, VEGF)之生成增加,進而誘發血管新生,此作用與腫瘤細胞之成長與侵犯性有關。除了誘發VEGF之表現外,HIF-1可以造成Transforming growth factor-α; (TGF-α)之釋出,進而作用在上皮成長因子接受器(epidermal grow -th factor receptor, EGFR),引起EGFR之活化,促進腫瘤細胞之增生與局部侵犯性。缺氧的另一個作用是增加活性氧分子之生成,即增加氧化壓力。近來之研究顯示活性氧分子可以活化許多轉錄因子(transcriptional factors),其中亦包含HIF-1之活化。而在許多腫瘤或非腫瘤細胞中發現氧化壓力之增加可誘發VEGF之表現、導致血管新生、TGF-α之釋放及EGFR之活化。因此,氧化壓力所導致之生物效應似乎與HIF-1活化所產生之作用相似。本研究即在探討頭頸部鱗狀細胞癌中,缺氧所導致之活性氧分子生成在活化IV
HIF-1與EGFR及癌細胞增生與侵犯性之角色。我們以不同的頭頸部鱗狀細胞癌細胞株進行研究。分別將三株不同之細胞株(FaDu、Detroit 562、Scc25)暴露於1%氧氣濃度下培養達24小時,並在不同時間點收集細胞,以NBT(Nitro blue tetrazolium)測量超氧游離基(superoxide;O2- )、DCFH-DA(2,7-dichloridihydrofluoresce – in diacetate)測量過氧化氫(H2O2)之生成,並以西方墨點法標定HIF-1α、活化態之EGFR,分析缺氧下HIF-1α、活化態EGFR的表現,以及在給予過氧化氫分解酶(catalase;CAT)後,HIF-1α蛋白質及活化態之EGFR的表現。結果發現在1%氧氣濃度培養下可造成各細胞株H2O2之生成增加,但superoxide(O2-)之生成則無顯著影響。缺氧亦可導致HIF-1α與EGFR之量隨缺氧暴露時間之增加而增加。H2O2之生成與HIF-1α之表現在缺氧3小時即有顯著增加,H2O2之生成在缺氧6小時達峰值,而HIF-1α之表現則於12小時達峰值。活化態EGFR之表現則在缺氧6小時才有顯著增加並維持至24小時。若在缺氧同時給予觸酶(catalase),則可明顯抑制缺氧所導致HIF-1α與活化態EGFR之增加。此研究結果顯示,缺氧可造成頭頸部鱗狀細胞癌之H2O2之生成增加,此活性氧分子之增加在誘發HIF-1α與EGFR之活性上扮有重要的角色。
Abstract
Malignant tumor has been the leading causes of death in Taiwan for many years. Caner cells possess many special characteristics including rapid proliferation even in a hypoxia environment, a common feature found in the majority of human tumors resulting from tumors rapid growth and inadequate blood supply. Previous studies have showed that hypoxia causes the stability and activation of hypoxia inducible factor-1α(HIF-1α), which can induce the expression of vascular endothelia growth factor (VEGF). It is well known that VEGF plays an important role in angiogenesis and subsequently leads to tumors proliferation and invasion. In addition, HIF-1αalsoenhances the release of transforming growth factor-α(TGF-α) and binding and activation of epidermal growth factor receptor (EGFR). Several studies have demonstrated that activation of EGFR is associated with tumor cells proliferation and invasion. Another important finding is that the formation of reactive oxygen species (ROS) is also increased in response to hypoxia. Recently, many studies have reported that ROS can activate many transcriptional factors including HIF-1. Furthermore, ROS can induce the expression of VEGF, release of TGF-αand activation of EGFR in both tumor and non-tumor cells. These results suggest that the biological effects of ROS may be similar to that of HIF-1. Therefore, in the present study, we investigate the role of ROS induced by hypoxia on activation of HIF-1α
VI
and EGFR in head and neck tumor cells. Three tumor cells including FaDu, Detroit 562 and Scc25 were cultured in 1% O2 for different time period. The levels of superoxide anion (O2-) and hydrogen peroxide (H2O2) were measured by nitro blue tetrazolim (NBT) and 2,7-dichloridihydrofluorescein diacetate (DCFH-DA), respectively. The expression of HIF-1αand active form of EGFR was evaluated by Western blotting. Our results showed that incubation in hypoxia (1% O2 ) resulted in an increased formation of H2O2 but no significant difference of O2- production in all three types tumor cells compared with that of cells incubated in normoxia condition. Hypoxia also caused the induction of HIF-1αand EGFR in a time dependent manner. After hypoxia for 3 hrs, the H2O2 formation and HIF-1αexpression began to increase and reached the peak amount at hypoxia for 6 and 12 hrs, respectively. However, until hypoxia for 6 hrs the expression of active form of EGFR began to enhance and maintained for 24 hrs under hypoxia condition. Addition of catalase resulted in a significant inhibition of hypoxia-induced enhanced expression of HIF-1α and active form EGFR. These results showed that in head and neck tumor cells, hypoxia can increase H2O2 formation, which may play an important role in induction of HIF-1αand EGFR.
目錄
頁次
目錄 ………………………………………………………………… I
圖次 ………………………………………………………………… II
中文摘要 …………………………………………………………… IV
英文摘要 …………………………………………………………… VI
第一章緒論 ………………………………………………………… 1
第二章研究目的 …………………………………………………… 16
第三章實驗材料與方法 …………………………………………… 17
第四章實驗結果 …………………………………………………… 34
第五章結論 ………………………………………………………… 64
第六討論 …………………………………………………………… 65
第七章參考文獻 …………………………………………………… 71
第七章 參考資料
Abe J and Berk BC: Hypoxia and HIF-1alpha stability: another stress-sensing mechanism for Shc. Cir. Res. 91: 4-6, 2002 .
Acker T and Plate KH : Role of hypoxia in tumor angiogenesis-molecular and cellular angiogenic crosstalk. Cell & Tissue Res. 314: 145-55, 2003.
Agostinelli E and Seiler N: Non-irradiation-derived reactive oxygen species (ROS) and cancer: therapeutic implications. Amino Acids 31: 341–355, 2006.
Ang KK, Berkey BA, Tu X, Zhang HZ, Katz R, Hammond EH, Fu KK and Milas L: Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res. 15: 7350-7356, 2002.
Arbiser JL, Petros J, Klafter R, Govindajaran B, McLaughlin ER and Brown LF: Reactive oxygen generated by Nox1 triggers the angiogenic switch. Proc. Natl. Acad. Sci. USA 99: 715–720, 2002.
Archer SL, Reeve HL, Michelakis E, Puttagunta L, Waite R, Nelson DP, Dinauer MC and Weir EK: O-2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proceed. Natl. Acad. Sci. 96: 7944–7949, 1999.
Aust SD, Chignell CF, Bray TM, Kalyanaraman B and Mason RP: Contemporary issues in toxicology: free radicals in toxicology. Toxicol. Appl. Pharmacol. 120: 168-178, 1993.
Bannister JV, Bannister WH and Rotilio G: Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit. Rev. Biochem. 22: 111-80, 1987.
Baselga J: The EGFR as a target for anticancer therapy--focus on cetuximab. Eur. J. Cancer 37: S16-22, 2001.
Bast A, Haene GRMM and Doelman CJA: Oxidants and antioxidants: state of the art. Am. J. Med. 91: 2-13, 1991.
Beasley NJP,Leek R, Alam M, Turley H, Cox GJ, Gatter K, Millard P, Fuggle S, and Harris AL: Hypoxia-inducible factors HIF-1α and HIF-2α in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res. 62: 2493–2497, 2002.
Belozerov VE and Van Meir EG: Hypoxia inducible factor-1: a novel target for cancer therapy. Anti-cancer Drugs 16: 901-909, 2005
Benohr HC and Waller HD: Gluathione. Klin. Wochenschr. 53: 789-820, 1975.
Blouin, C. C., Page, E. L., Soucy, G. M., and Richard, D. E : Blood.103, 1124–1130, 2004.
Bos R, van Diest P J, de Jong J S, van der Groep P, van der Valk P, van der Wall E: Hypoxia-inducible factor-1α is associated with angiogenesis, and expression of bFGF, PDGF-BB, and EGFR in invasive breast cancer. Histopathology 46: 31-36, 2005.
Bowler RP, and Crapo JD: Oxidative stress in allergic respiratory disease. J. Allergy Clin. Immunol. 110: 349-356, 2002.
Brar SS, Kennedy TP, Quinn M and Hoidal JR: Redox signaling of NF-kappaB by membrane NAD(P)H oxidases in normal and malignant cells. Protoplasma 221: 117–127, 2003.
Brown JM and Giaccia GW. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res. 58: 1408-1416, 1998.
Brown JM: The hypoxia cell: a target for selective cancer therapy. Cancer Res. 59: 5863-70, 1999.
Bunn HF and Poyton RO: Oxygen sensing and molecular adaptation to hypoxia. Physiol. Rev. 76: 839–885, 1996.
Caslino-Matsuda SM, Monzon ME and Forteza RM: Epidermal Growth Factor Receptor Activation by Epidermal Growth Factor Mediates Oxidant-Induced Goblet Cell Metaplasia in Human Airway Epithelium. J. Resp Cell .Mol. Bio. 34: 581-599, 2006.
Chang CK, Tsai CY, Lin LS, Jou SB, Liao SS and Cheng JT: Changes of superoxide dismutase(SOD)mRNA and activity in response to hypoxic stress in cultured Wistar rat glioma cells. Neurosci Lett 232:115-118, 1997.
Chang TC, Huang CJ, Tam K, Chen SF, Tan KT, Tsai MS, Lin TN, and Shyue SK: Stabilization of Hypoxia-inducible Factor-1 by Prostacyclin under Prolonged Hypoxia via Reducing Reactive Oxygen Species Level in Endothelial Cells, J. Biol. Chem. 280: 36567-36574,2005.
Chang YS. di Tomaso E. McDonald DM. Jones R. Jain RK and Munn LL: Mosaic blood vessels in tumors: frequency of cancer cells in contact with flowing blood. Sci. 97: 14608-14613, 2000.
Chen X, Liang H, Van Remmen H, Vijg J, and Richardson A: Catalase transgenic mice: characterization and sensitivity to oxidative stress. Arch. Biochem. Biophys. 422: 197-210, 2004.
Church SL. Grant JW. Ridnour LA. Oberley LW. Swanson PE. Meltzer PS and Trent JM: Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells.Proc.Natl. Acad.Sci. USA. 90:3113-7, 1993.
Ciardiello F, Caputo R, Bianco R, Damiano V, Fontanini G, Cuccato S, De Placido S, Bianco AR, and Tortora G: Inhibition of Growth Factor Production and Angiogenesis in Human Cancer Cells by ZD1839 (Iressa), a Selective Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor. Clin. Cancer Res. 7: 1459-1465, 2001.
Coquette A,Vray B and Vanderpas J: Role of vitamin E in the protection of the resident macrophage membrance against oxidative damage. Arch. Int. Physiol. Biochem. 94: S29-34, 1986.
Cotgreave IA, Moldeus P and Orrenius S: Host biochemical defense mechanisms against prooxidants. Annu. Rev. Pharmacol.Toxicol. 28: 189-212, 1988.
Cotgreave IA, Moldeus P and Orrenius S: Host biochemistry and pathology of radical-mediated protein oxidation. Biochem. J. 324:1-8, 1997.
Douziech N, Calvo E, Laine J. and Morisset J: Activation of MAP kinases in growth responsive pancreatic cancer cells. Cell Signal. 11: 591–602, 1999.
Ebert BL, Gleadle JM, O'Rourke JF, Bartlett SM, Poulton J. and Ratcliffe PJ: Isoenzyme-specific regulation of genes involved in energy metabolism by hypoxia: Similarities with the regulation of erythropoietin. Biochem. J. 313: 809–814, 1996.
Eriksson U and Alitalo K: Structure, expression and receptor-binding properties of novel vascular endothelial growth factors. Curr. Top Microbiol. Immunol. 237: 41-57, 1999.
Ferrara N and Davis-Smyth T: The biology of vascular endothelial growth factor. Endocrine Rev. 18: 4-25, 1997.
Folkman J: Fighting cancer by attacking its blood supply. Sci. Am. 275: 150-154, 1996.
Folkman J: Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29: 15–18, 2002.
Franco-Obregon A, Ureña J and Lopez-Barneo J: Oxygen-sensitive calciium channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc.Natl.Acad.Sci.USA. 92: 4715– 4719, 1995.
Gale NW and Yancopoulos GD: Growth factor acting via endothelial cell-specific receptor tyrosine kinases:VEGFs, angiopoietins, and ephrins in vascular development. Gene & Develop. 13: 1055-1066, 1999.
Gerald D, Berra E, Frapart YM, Chan DA, Giaccia AJ, Mansuy D, Pouyssegur J, Yaniv M and Mechta-Grigoriou F: JunD reduces tumor angiogenesis by protecting cells from oxidative stress. Cell 118:781-94, 2004.
Görlach, A, Diebold I and Schini-Kerth VB, Berchner-Pfannschmidt U, Roth U, Brandes RP, Kietzmann T and Busse R: Thrombin Activates the Hypoxia-Inducible Factor-1 Signaling Pathway in Vascular Smooth Muscle Cells: Role of the p22phox-Containing NADPH Oxidase. Circ. Res. 89:47-54, 2001.
Goyal P, Weissmann N, Grimminger F, Hegel C, Bader L, Rose F,Fink L, Ghofrani HA, Schermuly RT, Schmidt HHHW, Seeger W and Hänze J:Upregulation of NAD(P)H oxidase 1 in hypoxia activates hypoxia-inducible factor 1 via increase in reactive oxygen species. Free Radical Bio. Med. 36: 1279-1288, 2004.
Hancock JT, Desikan R and Neill S: Role of reactive oxygen species in cell signaling pathways. J Biochem Soc Trans 29; 345-350, 2001.
Herbst RS and Shin DM: Monoclonal antibodies to target epidermal growth factor receptor-positive tumors: a new paradigm for cancer therapy. Cancer 94: 1593-1611, 2002.
Hirata A, Ogawa S-I, Kometani T, Kuwano T, Naito S, Kuwano M, Ono M: ZD1839 (Iressa) Induces Antiangiogenic Effects through Inhibition of Epidermal Growth Factor Receptor Tyrosine Kinase. Cancer Res. 62: 2554-2560, 2002.
Hoidal JR: Reactiver ocygen sp0ecies and cell signaling. Am. J. Respir. Cell Mol. Biol. 25; 661-663, 2001.
Houck KA, Leung DW, Rowland AM, Winer J and Ferrara N: Dual regulation of vascular endothelial growth factor bioavailability by genetic and proteolytic mechanisms, J. Bio. Chem. 267: 26031-26037, 1992.
Huang LE. Gu J. Schau M and Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. USA 95: 7987-92, 1998.
Huang SM, Bock JM and Harari PM: Epidermal growth factor receptor blockade with C225 modulates proliferation, apoptosis, and radiosensitivity in squamous cell carcinomas of the head and neck. Cancer Res. 59: 1935-1940, 1999.
Huang Y, He T and Domann F.E: Decreased MnSOD expression in transformed cells is associated with increased cytosine methylation of the SOD2 gene. DNA Cell Biol. 18: 643-652, 1999.
Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara J M, Lane WS and Kaelin WG: HIF alpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292: 464–468, 2001.
Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim AV, Hebestreit HF, Mukherji M and Schofield CJ: Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292: 468–472, 2001.
Jefferson JA, Simoni J, Escudero E, Hurtado ME, Swenson ER, Wesson DE, Schreiner GF, Schoene RB, Johnson RJ and Hurtado A: Increased oxidative stress following acute and chronic high altitude exposure. High Altit. Med. Biol. 5: 61-9, 2004.
Kallio PJ. Wilson WJ, O'Brien S, Makino Y and Poellinger L: Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J. Bio. Chem. 274: 6519-25, 1999.
Kazzaz JA, Xu J, Palaia TA, Mantell L, Fein AM, and Horowitz S: Cellular oxygen toxicity. J. Biol. Chem. 271: 15182-6, 1996.
Ke LD, Adler-Storthz K, Clayman GL, Yung AW and Chen Z: Differential expression of epidermal growth factor receptor in human head and neck cancers. Head Neck 20: 320–327, 1998.
Kietzmann T and Görlach A: Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev. Biol. 16: 474-86, 2005.
Kinnula VL and Crapo JD: Superoxide DIsmutasea in the Lung and Human Lung Disease, Am.J. Respir crit Care Med. 167:1600-1619, 2003.
Klagsbrun V and D’Amore PA: Vascular endothelial growth fctor and its receptors. Cytokine & Growth Factor Rev. 7: 259-270, 1996.
Kong S and Davison AJ: The role of interactions between O2, H2O2, .OH,e- and O2- in free radical damage to biological systems. Arch. Biochem. Biophys. 204:18-29, 1980.
Koukourakis MI,Giatromanolaki A,Sivridis E,Simopoulos C,Turley H,Talks K,Gatter KC and Harris AL:Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis, and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int. J. Radiat. Oncol. Biol. Phys. 53: 1192–1202, 2002.
Kuppuswamy D. and Pike LJ: Desensitization of the EGF receptor alters its ability to undergo EGF-induced dimerization, Cell Signal 3: 107–117, 1991.
Kuroki M, Voest EE, Amano S, Beerepoot LV, Takashima S and Tolentino M: Reactive oxygen intermediates increase vascular endothelial growth factor expression in vitro and in vivo, J. Clin. Invest. 98: 1667-1675, 1996.
Kyzas PA, Stefanou D, Batistatou A and Agnantis NJ: Hypoxia-induced tumor angiogenic pathway in head and neck cancer: an in vivo study. Cancer Let. 225: 297-304, 2005.
Kyzas PA, Stefanou D, Batistatou A, Agnantis NJ: Hypoxia-induced tumor angiogenic pathway in head and neck cancer: an in vivo study. Cancer Letter 225: 297-304, 2005.
Lahiri S: Historical perspectives of cellular oxygen sensing and responses to hypoxia. J. Appl. Physiol. 88: 1467–1473, 2000.
Lando D, Peet DJ, Whelan DA, Gorman JJ and Whitelaw ML: Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 295: 858-861, 2002.
Li JJ, Oberley LW, St Clair DK, Ridnour LA, and Oberley TD: Phenotypic changes induced in human breast cancer cell by overexpression of manganese-containing superoxide dismutase. Oncogene. 10: 1989-2000, 1995.
Liang BC, Ross DA, Greenburg HS, Meltzer PS and TrentJ M: Evidence for allelic imbalance of chromosome 6 in human astrocytomas, Neurology. 44: 533-536, 1994.
Liang K, Ang KK, Milas L, Hunter N and Fan Z : The epidermal growth factor receptor mediates radioresistance. Int. J. Radiat. Oncol. Biol. Phys. 57: 246-54, 2003.
Liu LZ, Hu XW, Xia C, He J, Zhou Q, Shi X, Fang J and Jiang BH: Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic. Biol. Med. 41: 1521-33, 2006.
Lu DY, Liou HC, Tang CH and Fu WM: Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1α. Biochem.Pharmacol.72:992-1000, 2006
Machlin LJ and Bendich A: Free radical tissue damage: protective role of antioxidant nutrients. FASEB J. 1: 441-445, 1987.
Magalhaes J, Ascensao A, Soares JM, Neuparth MJ, Ferreira R, Oliveira J, Amado F and Duarte JA: Acute and severe hypobaric hypoxia-induced muscle oxidative stress in mice: the role of glutathione against oxidative damage. Eur. J. Appl. Physiol. 91: 185-191, 2004.
Manea A,Constantinescu E, Popor D and Raicu M:Chang in oxidative balance in rat pericytes exposed to diabetic conditions. J.cell.Mol.Med. 8: 117-126, 2004.
Marx J: How cells endure low oxygen. Science 303: 1454–1456, 2004.
Marshall C, Mamary AJ, Verhoven AJ and Marshall BE: Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am. J Resp Cell. Mol.Bio.15: 633-644, 1996.
Mateo J,Garcia-Lecea M, Cadenas S, Hernandez C and Moncada S: Regul -ation of hypoxia-inducible factor-1alpha by nitric oxide through mitochondria dependentand-independent pathways.Biochem.J.376:
537-544, 2003
Maxwell PH, Pugh CW, Ratcliffe PJ: Inducible operation of the erythropoietin 3" enhancer in multiple cell lines: Evidence for a widespread oxygen-sensing mechanism. Proc Natl Acad Sci, 90: 2423–2427, 1993.
Maxwell PH. Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER and Ratcliffe PJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399: 271– 275, 1999.
McCord JM and Fridovich I: Superoxide dismutase. An enzymic function for erythrocuprein(hemocuprein). J. Biol. Chem. 44: 6049-55, 1969.
Meves A, Stock SN, Beyerle A, Pittelkow MR, Peus D: H2O2 mediates oxidative stress-induced epidermal growth factor receptor phosphorylation. Toxicology Letters 122: 205-214, 2001.
Millikan D, Meese E, Vogelstein B, Witkowski C and Trent J: Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res. 51: 5449-5453, 1991.
Mohamed KM, Le A, Duong H, Wu Y, Zhang Q and Messadi DV: Correlation between VEGF and HIF-1α expression in human oral squamous cell carcinoma. Exp. Mol. Pathology 76: 143-152, 2004.
North S, Moenner M and Bikfalvi A: Recent developments in the regulation of the angiogenic switch by cellular stress factors in tumors. Cancer Lett. 218: 1-14, 2005.
O’Relly MS, Holmgren L, Folkman JC. Chen: Angiostatin induces and sustains dormancy of human primary tumors in mice, Nat. Med. 2: 689-692, 1996.
Oberley LW and Oberley TD: Reactive oxygen species in the aetiology of cancer. In: Ioannides C, Lewis DV, editors. Drugs, Diet, and Disease, Vol. 1. Prentice Hall; p. 49–63. 1994.
Oberley LW and Oberley TD: Role of antioxidant enzymes in cell immortalization and transformation. Mol. Cell Biochem. 84: 147-153, 1988.
Oberley LW, Oberley TD, Free radicals, cancer, and aging, In Johnson J.E., Walford R., Harmon D., Miquel J., (Ed.) Free Radicals, Aging, and Degenerative Diseases, (1986), Alan R Liss Inc, New York. pp. 325—381
Oberley LW., Superoxide dismutase and cancer, In Oberley LW, (Ed.) Superoxide Dismutase, Vol. II: Boca Rotan, (1982), CRC Press. Chapter 6
Oberley LW: Mechanism of the tumor suppressive effect of MnSOD overexpression. Biomed. Pharmacotherapy. 59: 143-8, 2005.
Oberley T.D, Oberley LW, Oxygen radicals and cancer, Yu B.P., (Ed.) Free Radicals in Aging, (1993), CRC Press, Boca Raton. pp. 248—267
O'Kelly I, Lewis A, Peers C and Kemp PJ: O2 Sensing by airway chemoreceptor-derived cells. J. Biol. Chem. 275: 7684-7692, 2000.
Pardal R, Ludewig U, Garcia-Hirschfeld J. and Lopez-Barneo J: Secre- tory responses of intact glomus cells in thin slices of rat carotid body to hypoxia and tetraethylammonium. Proc. Natl. Acad. Sci. USA. 97: 2361-6, 2000.
Peng XH, Karna P, Cao Z, Jiang BH, Zhou M and Yang L: Cross-talk between epidermal growth factor receptor and hypoxia-inducible factor-1alpha signal pathways increases resistance to apoptosis by up-regulating survivin gene expression. J. Biol. Chem. 281; 25903-25914, 2006.
Peng Y, Yuan G, Overholt JL, Kumar GK and Prabhakar NR: Systemic and cellular responses to intermittent hypoxia: evidence for oxidative stress and mitochondrial dysfunction. Adv. Exp. Med. Biol. 536: 559-64, 2003.
Petit AM, Rak J, Hung MC, Rockwell P, Goldstein N, Fendly B and Kerbel RS: Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: angiogenic implications for signal transduction therapy of solid tumors. Am. J. Pathol. 151: 1523–1530, 1997.
Podmore ID, Griffiths HR, Herbert KE, Mistry N, Mistry P, and Lunec J: Vitamin C exhibits pro-oxidant properties. Nature 392: 559, 1998.
Porwol T, Ehleben W, Brand V and Acker H: Tissue oxygen sensor function of NADPH oxidase isoforms, an unusual cytochrome aa3 and reactive oxygen species. Respir. Physiol. 128: 331-348, 2001.
Prabhakar NR and Kumar GK: Oxidative stress in the systemic and cellular responses to intermittent hypoxia. Biol. Chem. 385: 217-221, 2004.
Quinn MT, Ammons MC and Deleo FR: The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci. 111: 1-20, 2006.
Quintanilha AT and packer L: Vitamin E, physical exercise and tissue oxidative damage. Ciba. Found. Symp. 101: 56-69, 1983.
Richard DE, Berra E and Pouyssegur J: Angiogenesis: how a tumor adapts to hypoxia. Biochem. Bioph. Res. Commun. 266: 718-22, 1999.
Salceda S and Caro J: Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272: 22642-22647, 1997.
Salomon DS, Brandt R, Ciardiello F and Normanno N: Expression of messenger RNA for amphiregulin, heregulin, and cripto-1, three new members of the epidermal growth factor family, in human breast carcinomas. Breast Cancer Res. Treat. 35: 293-297, 1995.
Schafer G, Cramer T, Suske G, Kemmner W, Wiedenmann B and Hocker M: Oxidative stress regulates vascular endothelial growth factor-A gene transcription through Sp1- and Sp3-dependent activation of two proximal GC-rich promoter elements. J. Biol. Chem. 278: 8190-8198, 2003.
Semenza GL and Wang GL: A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol. Cell Biol. 12: 5447–5454, 1992.
Semenza GL, Nejfelt MK and Chi SM: Hypoxia-inducible nuclear factors bind to an enhancer element located 3" to the human erythropoietin gene. Proc. Natl. Acad. Sci. 88: 5680–5684, 1991.
Semenza GL, Roth PH and Fang HM: Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. J. Biol. Chem. 269: 23757–23763, 1994.
Semenza GL: HIF-1 and tumor progression: pathophysiology and therapeutics. Trends. Mol. Med.8: S62-67, 2002.
Semenza GL: Targeting HIF-1 for cancer therapy. Nature Review 3: 721-732, 2003.
Sies H: Biochemistry of thiol groups: the role of glutathione. Naturwissenschaften. 76: 57-64, 1989a.
Sies H: Relationship between free radicals and vitamins: an overview. Int. J. vitam. Nutr. Res. Suppl. 30: 215-23, 1989b.
Skogvall S, Korsgren M and Grampp W: Evidence that neuroepithelial endocrine cell control the spontaneous tone in guinea pig tracheal preparation. J. Appl. Physiol. 86: 789-798, 1999.
Szatrowski TP and Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51; 794-798, 1991.
Takigchi N, Saito N, Nunomura M, Kouda K, Oda K, Furrutyama N and Nakajima N: Use of 5-FU plus hyperbaric oxygen for treating malignant tumor: evaluation of antitumor effect and measurement of 5-FU in individual organs. Cancer Chemother. Pharmacol. 47: 11-14, 2001.
Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ and Harris AL: The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157: 411–421, 2000.
Thomas D, Espey M, Ridnour L, Hofseth LJ, Mancardi D, Harnu CC and Wink DA: Hypoxic inducible factor in extracellular signal-regulated kinase and P53 are regulated by distinct threshold concentrations of nitric oxide. Proc.Natl,Acad.Sci.72:485-490, 2004.
Thomliinson RH and Gray LH: The histological structure of some human lungcancers and the possible implications for radiotherapy. Br. J. Cancer 9: 539-549, 1995.
Thurfjell N, Coates PJ, Boldrup L, Lindgren B, Backlund B, Uusitalo T, Mahani D, Dabelsteen E, Dahlqvist A, Sjostrom B, Roos G, Vojtesek B, Nenutil R and Nylander K: Function and importance of p63 in normal oral mucosa and squamous cell carcinoma of the head and neck. Adv. Otorhinolaryngol 62: 49-57, 2005.
Turpaev KT: Reactive oxygen species and regulation of gene expression. Biochemistry (Mosc) 67: 281–292, 2002.
Uchida T, Rossignol F, Matthay MA, Mounier R, Couette S, Clottes E and Clerici C: J. Biol. Chem. 279: 14871–14878, 2004.
Veikkola T, Karkkainen M, Lena CW and Alitalo K: Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res. 60: 203-212, 2000.
Vera E and Quaggin SE: The role of VEGF-A in glomerular development and function. Curr. Opinion Nephrol. hyperten. 13: 9-15, 2004.
Vivekananda J, Lin A, Coalson JJ and King RJ: Acute inflammatory injury in the lung precipitated by oxidant stress induces fibroblasts to synthesize and release transforming growth factor-alpha. J. Biol. Chem. 269: 25057-25061, 1994.
Wang M, Kirk JS, Venkataraman S, Domann FE, Zhang HJ, Schafer FQ, Flanagan SW, Weydert CJ, Spitz DR, Buettner GR, Oberley LW: Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1alpha and vascular endothelial growth factor. Oncogene 24; 8154-8166, 2005.
Wenger RH: Mammalian oxygen sensing, signaling and gene regulation. J Exp Biol. 203: 1253-1263, 2000.
Weissmann N, Tadic A, HÄnze J, Rose F, Winterhalder S, Nollen M, Schermuly RT, Ghofrani HA, Seeger W and Grimminger F: Hypoxic vasoconstriction in intact lungs:a role for NADPH oxisade-derived H2O2 ?.Am J Physiol Lung Cell Mol Physiol. 279: 683-690, 2000.
Xu Y, Krishnan A, Wan SX, Majima H, Yeh C-C and Ludewig G: Mutations in the promoter reveal a cause for the reduced expression of the human manganese superoxide dismutase gene in cancer cells, Oncogene 18: 93-102, 1999.
Yan T,Oberley LW, Zhong W and St Clair DK: Manganese containing superoxide dismutase overexpression causes phenotypic reversion in SV40-transformed human lung fibroblasts. Cancer Res. 56: 2864-2871, 1996.
Yarden Y: The EGFR family and its ligands in human cancer. signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 37: S3-8, 2001.
Yasuda M, Ohzeki Y, Shimizu S, Naito S, Ohtsuru A, Yamamoto T, and Kuroiwa Y: Stimulation of in vitro angiogenesis by hydrogen peroxide and the relation with ETS-1 in endothelial cells, Life Sci. 64: 249-258, 1999.
Yeldandi AV, Rao MS and Reddy JK: Hydrogen peroxide generation in peroxisome proliferator-induced oncogenesis. Mutat. Res. 448: 159–177, 2000.
Yu BP: Cellular defenses against damage from reactive oxygen species. Physiol. Rev. 74: 139-162, 1994.
Zang Q,Thomas SM, Xi S, Smithgall TE, Siegfried JM, Kamens J, Gooding WE and Grandis JR: SRC family Kinases mediate epidermal groeth factor receptor ligand cleavage,proliferation and invasion of head and neck cancer cell. Cancer Research. 64:6166-6173, 2004.
Zhong W, Oberley LW, Oberley TD and St Clair DK: Suppression of the malignant phenotype of human glioma cells by overexpression of manganese superoxide dismutase. Oncongene 14:481-490, 1997.
Zhong H, Chiles K, Feldser D, Laughner E, Hanrahan C, Georgescu MM, Simons JW and Semenza GL: Modulation of hypoxia-inducible factor 1alpha expression by the epidermal growth factor/phosphatidylinositol 3-kinase/PTEN /A -KT/FRAP pathway in human prostate cancer cells: implications for tumor angiogenesis and therapeutics. Cancer Res. 60: 1541–1545, 2000.
Zhong,H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL and Simons JW: Overexpression of hypoxia-inducible factor 1α in common human cancers and their metastases. Cancer Res. 59, 5830–5835, 1999.
Zhou J, Schmid T, Schnitzer S and Brune B: Tumor hypoxia and cancer progession.Cancer Letters 1-12, 2005.
Zong W, Oberley LW, Oberley TD and Clair DK: Suppression of the malignant phenotype of human glioma cell by overexpression of manganese superoxide dismutase. Oncogen 14: 481-490, 1997.
Zundel W, Schinder C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE,Johnson RS, Jefferson AB, Stoke D, Giaccia AJ: Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 14:391-6, 2000.
林曜祥、任益民、林釗正、李日清、王炳龍:台灣地區頭頸癌概況。中耳醫誌。37:176-182,2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊