跳到主要內容

臺灣博碩士論文加值系統

(34.204.172.188) 您好!臺灣時間:2023/09/27 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳錫洲
研究生(外文):Shyi-Jou Chen
論文名稱:以流行性感冒嗜血桿菌感染免疫基因轉殖小鼠誘發細菌性腦膜炎並進一步研究在不同菌株感染後之動態性免疫反應
論文名稱(外文):To investigate the diversity in kinetic change of adaptive immunity to experimental bacterial meningitis in T1/T2 doubly transgenic mice infected with variant strains of Haemophilus influenzae
指導教授:王 志 堅司 徒 惠 康朱 夢 麟
指導教授(外文):Chih-Chien WangHuey-Kang SytwuMong-Ling Chu
學位類別:博士
校院名稱:國防醫學院
系所名稱:醫學科學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:103
中文關鍵詞:細菌性腦膜炎 轉殖鼠 第一型輔助型T 淋巴球 第二型輔助型T淋巴球 第四血球間白素 丙型干擾素
外文關鍵詞:Bacterial meningitisTransgenic miceType 1 T helper lymphocyte (Th1)Type 2 T helper lymphocyte(Th2)interleukin-4(IL
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
即使在新世紀的開始,對於細菌性腦膜炎造成的死亡率與神經方面後遺症,依然沒有明顯改善。由於對細菌腦膜炎的系統性免疫機轉的變化,迄今並不完全的清楚, 因此對細菌引發腦膜炎的深入研究有其必要性與急迫性。目前關於感染性疾病免疫機制與疾病狀態探討,以及免疫細胞基因表達與生理功能相關的研究中,哺乳類動物中之小鼠動物模式,關於免疫系統調節與免疫細胞基因表達,提供了最直接且有效的實驗方式。因此為釐清當腦膜炎發生時,系統性淋巴細胞所扮演的角色及其不同時程的表現。我們分別利用購自國家動物中心BALB/c小鼠與本實驗室參與研究成功的免疫雙基因轉殖鼠(T1/T2 double transgenic mice),探討在動物細菌性腦膜炎模式中,在不同感染時程的免疫系統變化,並以我們培育T1與T2雙基因轉殖鼠的淋巴細胞直接研究 Th1/Th2 的表現。當此鼠體內免疫細胞分泌IFN-時,於細胞表面上會表現hThy1;相反地,若免疫細胞產生IL-4時,則會在細胞表面表現出mThy1.1。為進一步探討流行性感冒嗜血桿菌,在不同來源的菌株引起腦膜炎的動態性系統免疫機制,我們分別用從兒科腦膜炎病人所分離出來的非莢模型流行性感冒嗜血桿菌(invasive nontypeable Haemophilus influenzae, INTHi)與從健康兒童鼻咽部採樣得到的非莢模型流行性感冒嗜血桿菌(colonized nontypeable Haemophilus influenzae, CNTHi),利用經頭顱內注射法注入INTHi與CNTHi,藉以直接引發細菌性腦膜炎,並以 PBS作為對照組。此外並進一步探討由兒科腦膜炎病人所分離出來的b 型流行性感冒嗜血桿菌 (Hib),利用相同的實驗方法直接引發 Hib細菌性腦膜炎,並與上述各組加以比較。
依此動物模式裏,綜合以上列使用的三種菌株中,所引發小鼠的細菌性腦膜炎中,分析其臨床症候包括死亡率、疾病嚴重度與腦組織腦脊膜發炎程度做比較。依時程比較,我們發現各實驗組的臨床症狀最嚴重的時間,皆發生在顱內注射細菌後第三天。尤其是在 Hib 細菌性腦膜炎的臨床症狀,比其他二組NTHi 細菌性腦膜炎更為嚴重。另外進一步分析這些老鼠在感染後其脾臟的淋巴細胞, 在不同時間點的變化包括脾臟淋巴細胞總數,以及各種主要淋巴細胞亞型的比例差異。在Hib 細菌性腦膜炎的小鼠中,分析其脾臟的總淋巴數,比其餘二實驗組來得偏低。此外由CNTHi 引發腦膜炎的小鼠分析其脾臟CD4+淋巴細胞有較高的比例表現,相對在B淋巴細胞其所佔的比例明顯降低。而在CD8+淋巴細胞方面,三組在各評估時間點,皆有偏高比例的表現趨勢。關於轉殖基因的表現方面,雖三組實驗組在感染第三日,CD4+hThy1+(Th1)淋巴細胞皆有明顯表現,但在感染後第七日在 CNTHi、INTHi與Hib,則依序漸減。雖CD4+mThy1.1+ (Th2)感染後的表現並不強,但仍有差異性。反之在感染第三日Th2 淋巴細胞以Hib這組最明顯,CNTHi這組最弱,而INTHi這組則介於二者之間。但在感染後第十四日不論Th1或Th2 淋巴細胞在CNTHi、 INTHi或Hib,皆很難偵測到了。最後我們分別萃取三種菌株的細胞膜蛋白做特別抗原淋巴細胞反應檢測,分析各實驗組的淋巴細胞經抗原刺激後的反應並收集培養之上清液,加以分析第四血球間白素(IL-4, interleukin-4)與丙型干擾素(Interferon-γ)的濃度。我們發現 Hib 有最強 的IL-4 表現,而IFN-γ則以 CNTHi表現較強。
綜合上述Hib感染的小鼠除有較嚴重的臨床症狀外,並有最明顯Th2的傾向包括在感染後第三與第七日;而NTHi,尤其是由健康兒童鼻咽腔分離出來的CNTHi 引發腦膜炎不但症狀較輕微,而且有Th1的傾向。本論文除了建立研究流行性感冒嗜血桿菌的小鼠腦膜炎實驗模式外,更進一步了解菌株本身具莢膜特性與否以及來源性質的差異,而表現出不同Th1/Th2動態性的變化。 因此藉由此研究模式,希冀對腦膜炎的免疫機制有更深入的了解,並且對未來疾病的預防與新型疫苗開發 提供有效的方針與對策。
To investigate the immunopathogenic mechanism of Haemophilus influenzae meningitis, we established an experimental meningitis model and elucidated the immune responses in T1/T2 doubly transgenic mice based on BALB/c mice background. These mice carry two transgenes that express two distinct cell-surface markers: a human Thy1 transgene (hThy1) under the control of the murine IFN-γ promoter, and a murine Thy1.1 transgene (mThy1.1) under the control of the murine IL-4 promoter, designated T1 and T2, respectively. These mice were infected with variant strains of H. influenzae including invasive and colonized nontypeable H. influenzae (NTHi). Moreover, mice inoculated with H. influenzae type b (Hib) were dissected for comparison. We disclosed mice infected with Hib, invasive NTHi (INTHi) or colonized NTHi (CNTHi) revealing most severe, moderate and less mild in disease severity in terms of clinical score, mortality rate and histopathology of brain respectively.
In addition, mice infected with Hib displayed severest symptoms and lowest total splenocyte counts on day 3 after infection. Simultaneously, we examined the significantly low percentage of CD19+ B cells, the relatively high level of CD4+ T cells and significantly high percentage of CD8+ T cells in Hib-infected mice.
We observed a rapid induction of the Th1 response, since the IFN-γ-producing CD4+ T cells significantly increased in all infected T1/T2 doubly transgenic mice. Furthermore, T1/T2 doubly transgenic mice infected with CNTHi expressed the most significant Th1 response, in terms of preferential increase of CD4+ T cells, as well as the highest percentage and longest maintenance of Th1 cells. In contrast, in transgenic mice infected with invasive Hib, the Th1/Th2 paradigm shifted to Th2 response. On day 7 after infection, the Th1 response gradually declined and the Th2 response rather sustained in Hib infected mice. This was due to a significant increase in IL-4-producing CD4+ T cells, accompanied by a rapid decline of Th1 cells. Mice infected with INTHi revealed intermediate Th1/Th2 responses between those of mice infected with CNTHi and Hib. Two weeks after infection, both Th1 and Th2 cells were barely detectable. Moreover, we demonstrated using an antigen-specific re-stimulation test to analyze the effector function of lymphocyte subsets that CD8+ T cells contributed to more predominantly production of IFN-γ than CD4+ T cells did; and CD4+ T cells partly contributed to the secretion of IL-4 from flowcytometry of intracellular cytokine staining in Hib infected mice. In conclusion, the preferential Th1/Th2 trend in H. influenzae meningitis is correlated with clinical severity as well as characteristics of the pathogens themselves.Our results support that these transgenic mice provide an available model to dissect the complex kinetic change of adaptive immunity in bacterial infectious diseases.
目錄
頁次
目錄 ……………………………………………………………………I
圖目錄 …..……………………………………………………..……VII
英文縮寫表 ……………….…………………………………………XI
中文摘要 …….…………………..……………………….…………XII
英文摘要 ……..……………………………………………………XIII

第壹章 緒論…………………….…..…………………1
一、 細菌性腦膜炎…………………….……..……….………1
二、 關於流行性感冒嗜血桿菌………………..…..…….…2
三、 細菌腦膜炎的系統性免疫機轉………….…..…….…3
四、 輔助性T淋巴細胞之功能…………..……..…………4
五、 Th1/Th2 於細菌性感染的角色…………....……...…5
六、 T1/T2雙基因轉殖鼠之運用……………..……………6
七、 實驗目標……...….….………….……..…..………………6

第貳章 探討b型流行性感冒嗜血桿菌引起腦膜炎的系統動態性調解型免疫機轉……...……….……….…8
一、 前言……………..…….………….……..…….………….…8
二、 材料與方法………..………….……...…….………….…9
1. 實驗材料與設備………………….……….…….………….…9
(1) 試劑.…..………...……..…….…..….…....………..……….…9
(2) 藥品…..………...……..…………….…...…….………….…10
(3) 培養液..………...……..……..………….……......……….…11
(4) 儀器設備……...……..………………….…….....……..……11
2. 實驗動物與T1/T2雙基因轉殖小鼠之篩選…….…..………12
3. 電泳分析……..………………….……....……….………...…13
4. 實驗菌株配置……......…….…….……....…….….……….…13
5. Hib小鼠腦膜炎實驗模式..……...……....…….…….…….…14
6. 臨床疾病嚴重度之評估……..….……....……..….……….…14
7. 腦組織切片檢查…..……..…………………….….……….…15
8. 淋巴細胞的製備…..….….………………………..……….…16
9. 以流式細胞儀分析細胞表面抗原之表現…………..…….…17
10. 酵素連結免疫吸附分析….………………….……..,…...…18
11. 專一抗原細菌外層膜蛋白製備…….………..….……….…19
12. 蛋白質濃度之測定….….…………………….…..…………19
13. SDS-PAGE電泳分析方法………………….……..….….…20
14. T1/T2雙基因轉殖小鼠後脾臟淋巴對於菌株專一抗原產生細胞增生之實驗…………………….………..………...….….…21
15. 細胞內細胞素(IL4, IFN-γ)染色……….……….….….…22
三、實驗結果……………………….………………....….….…24
1. 動物實驗…….……………….………………..........….….…24
2. 小鼠Hib腦膜炎的臨床表徵………….……….....…..…..…26
3. 小鼠Hib腦膜炎的腦組織切片病理變化…………….….…28
4. 以流式細胞儀偵測在不同時間點實驗小鼠脾臟細胞的各種淋巴細胞亞型之觀察分析…….……………….........…..…..…30
5. 以流式細胞儀偵測在不同時間點Hib感染小鼠脾臟的CD4+T淋巴細胞之觀察分析轉殖基因hThy1+/mThy1.1+(T1/T2)的表現……………………………………………………………32
6. T1/T2雙基因轉殖小鼠後脾臟淋巴對於菌株專一抗原產生細胞增生之實驗………...…………….….........………….….….…35
7. 脾臟淋巴細胞對特異抗原刺激產生Th1/Th2細胞素表現,藉酵素免疫分析法偵測……….....………....…………….…..…37
8. 以流式細胞儀偵測在經培養脾臟淋巴細胞對特異抗原刺激產生細胞內IL-4 與IFN-γ細胞素表現……………….…...…39
四、討論………………..……………….........…………….…..…41

第三章 探討非莢模型流行性感冒嗜血桿菌引起腦膜炎的系統動態性調解型免疫機轉..…………………..43
一、 前言………….……..…….………….……..……………….…43
二、 材料與方法…………………….……..…….……..…….44
1. 實驗材料與設備………..………...……….….….……..….…44
(1) 試劑.…..………...……..…….…………..…….…..……..….44
(2) 藥品…..………...……..…….…………..…………..…….…45
(3) 培養液..………...……..……..………….……......….………46
(4) 儀器設備……...……..………………….…….....…..…..…..46
2. 實驗動物與T1/T2雙基因轉殖小鼠之篩選……..…….……47
3. 電泳分析……...……..………………….……....….….…...…48
4. 實驗菌株配置……...……..……….…….…….….…….….…48
5. NTHi小鼠腦膜炎實驗模式..……….…..…….….…….….…49
6. 臨床疾病嚴重度之評估…………..…….…….….…….….…49
7. 腦組織切片檢查…..……….…….…………….……….….…50
8. 淋巴細胞的製備…..……….…….…………….……….….…51
9. 以流式細胞儀分析細胞表面抗原之表現……….…….….…52
10. 酵素連結免疫吸附分析Enzyme-linked Immunosorbent Assays (ELISAs)………………………………….….……….…53
11. 專一抗原細菌外層膜蛋白製備………………………….…54
12. 蛋白質濃度之測定….………………………………………54
13. SDS-PAGE 電泳分析方法………..…………….….….…..55
14. T1/T2雙基因轉殖小鼠後脾臟淋巴對於菌株專一抗原產生細胞增生之實驗…………………………..…………...….….…56
三、實驗結果……………………..….………………....….….…58
1. 動物實驗……….…………….………………..........….….…58
2. 不同來源NTHi的菌株引發小鼠腦膜炎的臨床表徵….….60
3. 小鼠感染NTHi (INTHi 與CNTHi)腦膜炎的腦組織切片病理變化.……………………………….…………………........…62
4. 以流式細胞儀偵測在不同時間點實驗小鼠脾臟細胞的各種淋巴細胞亞型之觀察分析…………………….….…………....64
5. 以流式細胞儀偵測在不同時間點NTHi感染小鼠脾臟的CD4+T淋巴細胞之觀察分析轉殖基因hThy1+/mThy1.1+(T1/T2)的表現………………………………………………………..…67
6. T1/T2雙基因轉殖小鼠後脾臟淋巴對於菌株專一抗原產生細胞增生之實驗…………………….………………........….….…69
7. 脾臟淋巴細胞對特異抗原刺激產生Th1/Th2細胞素表現,藉酵素免疫分析法偵測……………………………….………...72
四、討論…………………..……………….........…………….…..…74
第肆章 總結………..……….........…………….…..…74
參考文獻………………..………………...............…………….…..…87

附錄一、與本論文研究有關之個人著作及發表
[1] Borchardt JK. The history of bacterial meningitis treatment. Drug News Perspect. 2004;17:219-24.Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 2003;4:376-85.
[2]Chavez-Bueno S, McCracken GH Jr. Bacterial meningitis in children. Pediatr Clin North Am. 2005 Jun;52(3):795-810, vii.
[3]Leib SL, Tauber MG. Pathogenesis of bacterial meningitis. Infect Dis Clin North Am 1999;13:527-48, v-vi.
[4] Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 2003;4:376-85.
[5]Spach DH, Jackson LA. Bacterial meningitis. Neurol Clin 1999; 17:711-35.
[6]Saez-Llorens X, McCracken GH, Jr. Bacterial meningitis in children. Lancet 2003;361:2139-48.
[7]van Alphen L, van Dam A, Bol P, Spanjaard L and Zanen HC. Types and subtypes of 73 strains of Haemophilus influenzae isolated from patients more than 6 years of age with meningitis in The Netherlands. J Infect 1987; 15:95-101.
[8]Nau R, Bruck W. Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 2002;25:38-45.
[9]Visconti EB, Curran JP and Watchi R. Nontypeable Haemophilus influenzae meningitis in an adolescent. Am J Dis Child 1990; 144:517-8.
[10]Faden H. Meningitis caused by nontypable Haemophilus influenzae in a four-month-old infant. Pediatr Infect Dis 1991; 10:254-5.
[11]Morris JT, Longfield RN. Meningitis and bacteremia due to nontypeable Haemophilus influenzae in adults. Clin Infect Dis 1992; 14:782-3.
[12] Kay SE, Nack Z and Jenner BM. Meningitis and septicaemia in a child caused by non-typable Haemophilus influenzae biotype III. Med J Aust 2001; 175:484-5.
[13]Gratten, M., Barker, J., Shann, F. et al. Non-type b Haemophilus influenzae meningitis. Lancet 1985;1: 1343-1344.
[14]Cuthill, S.L., Farley, M.M. and Donowitz, L.G. Nontypable Haemophilus influenzae meningitis. Pediatr. Infect. Dis. J. 1999;18: 660-662.
[15]O'Neill, J.M., St Geme, J.W., 3rd, Cutter, D. et al. Invasive disease due to nontypeable Haemophilus influenzae among children in Arkansas. J. Clin. Microbiol. 2003;41: 3064-3069.
[16]Heath, P.T., Booy, R., Azzopardi, H.J. et al. Non-type b Haemophilus influenzae disease: clinical and epidemiologic characteristics in the Haemophilus influenzae type b vaccine era. Pediatr. Infect. Dis. 2001;20: 300-305.
[17]Rijkers GT, Vermeer-de Bondt PE, Spanjaard L, Breukels MA, Sanders EA. Return of Haemophilus influenzae type b infections. Lancet 2003;361:1563-4.
[18]Scheld WM, Koedel U, Nathan B, Pfister HW. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002;186:S225-33.
[19]Powers WJ. Cerebrospinal fluid lymphocytosis in acute bacterial meningitis. Am J Med 1985;79:216-20.
[20]Bamborschke S, Wullen T, Beil C. Quantitation of lymphocyte subsets in cerebrospinal fluid and blood during the clinical course of aseptic and bacterial meningitis. Eur Neurol 1990;30:291-5.
[21]Cauwels A, Frei K, Sansano S, Fearns C, Ulevitch R, Zimmerli W, Landmann R. The origin and function of soluble CD14 in experimental bacterial meningitis. J Immunol 1999;162:4762-72.
[22]Bakhiet M, Mustafa M, Zhu J, et al. Induction of cytokines and anti-cytokine autoantibodies in cerebrospinal fluid (CSF) during experimental bacterial meningitis. Clin Exp Immunol 1998;114:398-402.
[23]O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000;10:542-50.
[24]Das G, Sheridan S and Janeway CA, Jr. The source of early IFN-gamma that plays a role in Th1 priming. J Immunol 2001;167:2004-10.
[25]Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR: Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 1987; 166:1229-44.
[26]Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136:2348-57.
[27]Del Prete GF, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, Ricci M, Romagnani S: Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest, 1991; 88:346-50.
[28]Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145-73.
[29]Fiorentino DF, Bond MW, Mosmann TR: Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170(6):2081-95.
[30]Tsicopoulos A, Hamid Q, Varney V, Ying S, Moqbel R, Durham SR, Kay AB: Preferential messenger RNA expression of Th1-type cells (IFN-gamma+, IL-2+) in classical delayed-type (tuberculin) hypersensitivity reactions in human skin. J Immunol 1992; 148(7):2058-61.
[31]Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR, Modlin RL: Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 1991; 254(5029):277-9.
[32]Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145-73.
[33]Mosmann TR, Sad S: The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17(3):138-46.
[34]Seder RA, Paul WE: Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 1994; 12:635-73.
[35]Chonmaitree T, Baron S. Bacteria and viruses induce production of interferon in the cerebrospinal fluid of children with acute meningitis: a study of 57 cases and review. Rev Infect Dis 1991;13:1061-5.
[36]Kornelisse RF, Hack CE, Savelkoul HF, van der Pouw Kraan TC, Hop WC, van Mierlo G, Suur MH, Neijens HJ, de Groot R. Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis. Infect Immun 1997;65:877-81.
[37]van Furth AM, Seijmonsbergen EM, Langermans JA, Groeneveld PH, de Bel CE, van Furth R. High levels of interleukin 10 and tumor necrosis factor alpha in cerebrospinal fluid during the onset of bacterial meningitis. Clin Infect Dis. 1995;21:220-2.
[38]Hsieh SL, Chen NJ, Tarbell K, Liao NS, Lai YG, Lee KH, Lee KM, Wu SC, Sytwu HK, Han SH, McDevitt H. Transgenic mice expressing surface markers for IFN-gamma and IL-4 producing cells. Mol Immunol 2000;37:281-93.
[39]Wang CC, Siu LK, Chen MK, Yu YL, Lin FM, Ho M, Chu ML. Use of automated riboprinter and pulsed-field gel electrophoresis for epidemiological studies of invasive Haemophilus influenzae in Taiwan. J Med Microbiol 2001;50:277-83.
[40]Irazuzta JE, de Courten-Myers G, Zemlan FP, Bekkedal MY, Rossi J, 3rd. Serum cleaved Tau protein and neurobehavioral battery of tests as markers of brain injury in experimental bacterial meningitis. Brain Res 2001;913:95-105.
[41]Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 2002;186:798-806.
[42]Wu, S.F., Liu, T.M., Lin, Y.C. et al. (2004) Immunomodulatory effect of decoy receptor 3 on the differentiation and function of bone marrow-derived dendritic cells in nonobese diabetic mice: from regulatory mechanism to clinical implication. J. Leukoc. Biol. 75, 293-306.
[43]Barenkamp SJ, Munson RS, Jr, Granoff DM. Subtyping isolates of Haemophilus influenzae type b by outer-membrane protein profiles. J Infect Dis 1981;143:668-76.
[44]Sung HH, Juang JH, Lin YC, Kuo CH, Hung JT, Chen A, Chang DM, Chang SY, Hsieh SL, Sytwu HK. Transgenic Expression of Decoy Receptor 3 Protects Islets from Spontaneous and Chemical-induced Autoimmune Destruction in Nonobese Diabetic Mice. J Exp Med 2004;199:1143-51.
[45]Hung JT, Liao JH, Lin YC, Chang HY, Wu SF, Chang TH, Kung JT, Hsieh SL, McDevitt H, Sytwu HK. Immunopathogenic role of T(H)1 cells in autoimmune diabetes: Evidence from a T1 and T2 doubly transgenic non-obese diabetic mouse model. J Autoimmun 2005 25, 181-192.
[46]Nathan, B.R. and Scheld, W.M. New Advances in the Pathogenesis and Pathophysiology of Bacterial Meningitis. Curr. Infect. Dis. Rep. 2000; 2, 332-336.
[47]Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004;4:841-55.
[48]Diab A, Zhu J, Lindquist L, Wretlind B, Bakhiet M, Link H. Haemophilus influenzae and Streptococcus pneumoniae induce different intracerebral mRNA cytokine patterns during the course of experimental bacterial meningitis. Clin Exp Immunol 1997;109:233-41.
[49]Raziuddin S, el-Awad ME, Telmesani AW, Bilal,NE, al-Janadi M. CD4+ Th2 cell response cytokine production in bacterial meningitis. J Clin Immunol 1995; 15:338-48.
[50]引起Diab A, Zhu J, Lindquist L, Wretlind B, Link H, Bakhiet M. Cytokine mRNA profiles during the course of experimental Haemophilus influenzae bacterial meningitis. Clin Immunol Immunopathol 1997;85:236-45.
[51]Torre D, Zeroli C, Ferraro G, Speran za F, Tambini R, Martegani R, Fiori GP. Cerebrospinal fluid levels of IL-6 in patients with acute infections of the central neverous system. Scand J Infect Dis 1992;24:787-91.
[52]Paul R, Koedel U, Winkler F, et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 2003;126:1873-82.
[53]Matsuzono, Y., Narita, M., Akutsu, Y. and Togashi, T. Interleukin-6 in cerebrospinal fluid of patients with central nervous system infections. Acta Paediatr. 1995; 84, 879-883.
[54]Kornelisse, R.F., Hack, C.E., Savelkoul, H.F. et al. Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis. Infect. Immun. 1997; 65, 877-881.
[55]Raziuddin, S., el-Awad, M.E. and Mir, N.A. Bacterial meningitis: T cell activation and immunoregulatory CD4+ T cell subset alteration. J. Allergy Clin. Immunol. 1991;87, 1115-1120.
[56]Marks MI, Ziegler EJ, Douglas H, Corbeil LB, Braude AI. Induction of immunity against lethal Haemophilus influenzae type b infection by Escherichia coli core lipopolysaccharide. J Clin Invest 1982;69:742-9.
[57]Brodeur BR, Tsang PS, Hamel J, Larose Y, Montplaisir S. Mouse models of infection for Neisseria meningitidis B,2b and Haemophilus influenzae type b diseases. Can J Microbiol 1986;32:33-7.
[58]Rundell A, DeCarlo R, HogenEsch H and Doerschuk P. The humoral immune response to Haemophilus influenzae type b: a mathematical model based on T-zone and germinal center B-cell dynamics. J Theor Biol 1998; 194:341-81.
[59]Koedel U, Pfister HW. Models of experimental bacterial meningitis. Role and limitations. Infect Dis Clin North Am 1999; 13:549-77, vi.
[60]Mercado R, Vijh S, Allen SE, Kerksiek K, Pilip IM, Pamer EG. Early programming of T cell populations responding to bacterial infection. J Immunol 2000; 165:6833-9.
[61]Corbin GA, Harty JT. Duration of infection and antigen display have minimal influence on the kinetics of the CD4+ T cell response to Listeria monocytogenes infection. J Immunol 2004;173:5679-87.
[62]Foxwell, A.R., Kyd, J.M., Karupiah, G. and Cripps, A.W. CD8+ T cells have an essential role in pulmonary clearance of nontypeable Haemophilus influenzae following mucosal immunization. Infect. Immun. 2001; 69, 2636-2642.
[63]Varma TK, Lin CY, Toliver-Kinsky TE, Sherwood ER. Endotoxin-induced gamma interferon production: contributing cell types and key regulatory factors. Clin Diagn Lab Immunol 2002;9:530-43.
[64]Andersson, A., Dai, W.J., Di Santo, J.P. and Brombacher, F. (1998) Early IFN-gamma production and innate immunity during Listeria monocytogenes infection in the absence of NK cells. J. Immunol. 161, 5600-5606.
[65]Assenmacher M, Schmitz J, Radbruch A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-gamma and in interleukin-4-expressing cells. Eur J Immunol 1994;24:1097-101.
[66]Weiser JN, Pan N. Adaptation of Haemophilus influenzae to acquired and innate humoral immunity based on phase variation of lipopolysaccharide. Mol Microbiol 1998; 30:767-75.
[67] Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M and Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003; 197:403-11.
[68]King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth SR. Adaptive immunity to nontypeable Haemophilus influenzae. Am J Respir Crit Care Med 2003;167:587-92.
[69]Murphy TF. Immunity to nontypeable Haemophilus influenzae: elucidating protective responses. Am J Respir Crit Care Med 2003; 167:486-7.
[70]Buchmeier NA, Schreiber RD. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci U S A 1985; 82:7404-8.
[71]Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG and Lepper H. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 1995; 373:255-7.
[72]Cosmi L, Liotta F, Angeli R, et al. Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood 2004; 103:3117-21.
[73]Shedlock DJ, Whitmire JK, Tan J, MacDonald AS, Ahmed R, Shen H. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol 2003;170:2053-63.
[74]Schiemann M, Busch V, Linkemann K, Huster KM, Busch DH. Differences in maintenance of CD8+ and CD4+ bacteria-specific effector-memory T cell populations. Eur J Immunol 2003;33:2875-85.
[75]Rao, V.K., Krasan, G.P., Hendrixson, D.R., Dawid, S., St Geme, J.W. 3rd. Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae. FEMS Microbiol. Rev. 1999;23, 99-129.
[76]Turk, D.C. The pathogenicity of Haemophilus influenzae. J. Med. Microbiol. 1984; 18, 1-16.
[77]Weiser, J.N., Pan, N. Adaptation of Haemophilus influenzae to acquired and innate humoral immunity based on phase variation of lipopolysaccharide. Mol. Microbiol. 1998;30, 767-775.
[78]Kurono Y, Yamamoto M, Fujihashi K, et al. Nasal immunization induces Haemophilus influenzae-specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity. J Infect Dis 1999; 180:122-32.
[79]Forsgren J, Samuelson A, Ahlin A, Jonasson J, Rynnel-Dagoo B and Lindberg A. Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as demonstrated by in situ hybridization and bacterial viability assay. Infect Immun 1994; 62:673-9.
[80]Gilsdorf, J.R. Antigenic diversity and gene polymorphisms in Haemophilus influenzae. Infect. Immun. 1998;66, 5053-5059.
[81]Kyd J, Cripps A. Nontypeable Haemophilus influenzae: challenges in developing a vaccine. J Biotechnol 1999; 73:103-8.
[82] Foxwell AR, Kyd JM and Cripps AW. Nontypeable Haemophilus influenzae: Pathogenesis and Prevention. Microbiol. Mol. Biol. Rev. 1998; 62:294-308.
[83]Poolman, J.T., Bakaletz, L., Cripps, A. et al. Developing a nontypeable Haemophilus influenzae (NTHi) vaccine. 2001;19, S108-115.
[84]Kodama H, Faden H, Harabuchi Y, Kataura A, Bernstein JM and Brodsky L. Cellular immune response of adenoidal and tonsillar lymphocytes to the P6 outer membrane protein of non-typeable Haemophilus influenzae and its relation to otitis media. Acta Otolaryngol 1999; 119:377-83.
[85]Neary JM, Yi K, Karalus RJ and Murphy TF. Antibodies to loop 6 of the P2 porin protein of nontypeable Haemophilus influenzae are bactericidal against multiple strains. Infect Immun 2001; 69:773-8.
[86]Hotomi M, Yamanaka N, Shimada J, et al. Intranasal immunization with recombinant outer membrane protein P6 induces specific immune responses against nontypeable Haemophilus influenzae. Int J Pediatr Otorhinolaryngol 2002; 65:109-16.
[87]Kyd JM, Cripps AW, Novotny LA and Bakaletz LO. Efficacy of the 26-Kilodalton Outer Membrane Protein and Two P5 Fimbrin-Derived Immunogens To Induce Clearance of Nontypeable Haemophilus influenzae from the Rat Middle Ear and Lungs as Well as from the Chinchilla Middle Ear and Nasopharynx. Infect. Immun. 2003; 71:4691-4699.
[88]Novotny LA, Bakaletz LO. The Fourth Surface-Exposed Region of the Outer Membrane Protein P5-Homologous Adhesin of Nontypable Haemophilus influenzae Is an Immunodominant But Nonprotective Decoying Epitope. J Immunol 2003; 171:1978-1983.
[89]Duim B, Vogel L, Puijk W, et al. Fine mapping of outer membrane protein P2 antigenic sites which vary during persistent infection by Haemophilus influenzae. Infect Immun 1996; 64:4673-9.
[90]Badr WH, Loghmanee D, Karalus RJ, Murphy TF and Thanavala Y. Immunization of mice with P6 of nontypeable Haemophilus influenzae: kinetics of the antibody response and IgG subclasses. Vaccine 1999; 18:29-37.
[91]Kyd JM, Cripps AW. Potential of a novel protein, OMP26, from nontypeable Haemophilus influenzae to enhance pulmonary clearance in a rat model. Infect Immun 1998; 66:2272-8.
[92]Bertot GM, Becker PD, Guzman CA and Grinstein S. Intranasal vaccination with recombinant P6 protein and adamantylamide dipeptide as mucosal adjuvant confers efficient protection against otitis media and lung infection by nontypeable Haemophilus influenzae. J Infect Dis 2004; 189:1304-12.
[93]Hou Y, Gu XX. Development of peptide mimotopes of lipooligosaccharide from nontypeable Haemophilus influenzae as vaccine candidates. J Immunol 2003; 170:4373-9.
[94]Assenmacher M, Schmitz J, Radbruch A. Flowcytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukine-10 in interferon-gamma and in interleukin-4-expressing cells. Eur J Immunol 1994;24:1097-101.
[95]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top