|
[1] Borchardt JK. The history of bacterial meningitis treatment. Drug News Perspect. 2004;17:219-24.Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 2003;4:376-85. [2]Chavez-Bueno S, McCracken GH Jr. Bacterial meningitis in children. Pediatr Clin North Am. 2005 Jun;52(3):795-810, vii. [3]Leib SL, Tauber MG. Pathogenesis of bacterial meningitis. Infect Dis Clin North Am 1999;13:527-48, v-vi. [4] Kim KS. Pathogenesis of bacterial meningitis: from bacteraemia to neuronal injury. Nat Rev Neurosci 2003;4:376-85. [5]Spach DH, Jackson LA. Bacterial meningitis. Neurol Clin 1999; 17:711-35. [6]Saez-Llorens X, McCracken GH, Jr. Bacterial meningitis in children. Lancet 2003;361:2139-48. [7]van Alphen L, van Dam A, Bol P, Spanjaard L and Zanen HC. Types and subtypes of 73 strains of Haemophilus influenzae isolated from patients more than 6 years of age with meningitis in The Netherlands. J Infect 1987; 15:95-101. [8]Nau R, Bruck W. Neuronal injury in bacterial meningitis: mechanisms and implications for therapy. Trends Neurosci 2002;25:38-45. [9]Visconti EB, Curran JP and Watchi R. Nontypeable Haemophilus influenzae meningitis in an adolescent. Am J Dis Child 1990; 144:517-8. [10]Faden H. Meningitis caused by nontypable Haemophilus influenzae in a four-month-old infant. Pediatr Infect Dis 1991; 10:254-5. [11]Morris JT, Longfield RN. Meningitis and bacteremia due to nontypeable Haemophilus influenzae in adults. Clin Infect Dis 1992; 14:782-3. [12] Kay SE, Nack Z and Jenner BM. Meningitis and septicaemia in a child caused by non-typable Haemophilus influenzae biotype III. Med J Aust 2001; 175:484-5. [13]Gratten, M., Barker, J., Shann, F. et al. Non-type b Haemophilus influenzae meningitis. Lancet 1985;1: 1343-1344. [14]Cuthill, S.L., Farley, M.M. and Donowitz, L.G. Nontypable Haemophilus influenzae meningitis. Pediatr. Infect. Dis. J. 1999;18: 660-662. [15]O'Neill, J.M., St Geme, J.W., 3rd, Cutter, D. et al. Invasive disease due to nontypeable Haemophilus influenzae among children in Arkansas. J. Clin. Microbiol. 2003;41: 3064-3069. [16]Heath, P.T., Booy, R., Azzopardi, H.J. et al. Non-type b Haemophilus influenzae disease: clinical and epidemiologic characteristics in the Haemophilus influenzae type b vaccine era. Pediatr. Infect. Dis. 2001;20: 300-305. [17]Rijkers GT, Vermeer-de Bondt PE, Spanjaard L, Breukels MA, Sanders EA. Return of Haemophilus influenzae type b infections. Lancet 2003;361:1563-4. [18]Scheld WM, Koedel U, Nathan B, Pfister HW. Pathophysiology of bacterial meningitis: mechanism(s) of neuronal injury. J Infect Dis 2002;186:S225-33. [19]Powers WJ. Cerebrospinal fluid lymphocytosis in acute bacterial meningitis. Am J Med 1985;79:216-20. [20]Bamborschke S, Wullen T, Beil C. Quantitation of lymphocyte subsets in cerebrospinal fluid and blood during the clinical course of aseptic and bacterial meningitis. Eur Neurol 1990;30:291-5. [21]Cauwels A, Frei K, Sansano S, Fearns C, Ulevitch R, Zimmerli W, Landmann R. The origin and function of soluble CD14 in experimental bacterial meningitis. J Immunol 1999;162:4762-72. [22]Bakhiet M, Mustafa M, Zhu J, et al. Induction of cytokines and anti-cytokine autoantibodies in cerebrospinal fluid (CSF) during experimental bacterial meningitis. Clin Exp Immunol 1998;114:398-402. [23]O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 2000;10:542-50. [24]Das G, Sheridan S and Janeway CA, Jr. The source of early IFN-gamma that plays a role in Th1 priming. J Immunol 2001;167:2004-10. [25]Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR: Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 1987; 166:1229-44. [26]Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL: Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 1986; 136:2348-57. [27]Del Prete GF, De Carli M, Mastromauro C, Biagiotti R, Macchia D, Falagiani P, Ricci M, Romagnani S: Purified protein derivative of Mycobacterium tuberculosis and excretory-secretory antigen(s) of Toxocara canis expand in vitro human T cells with stable and opposite (type 1 T helper or type 2 T helper) profile of cytokine production. J Clin Invest, 1991; 88:346-50. [28]Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145-73. [29]Fiorentino DF, Bond MW, Mosmann TR: Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med 1989; 170(6):2081-95. [30]Tsicopoulos A, Hamid Q, Varney V, Ying S, Moqbel R, Durham SR, Kay AB: Preferential messenger RNA expression of Th1-type cells (IFN-gamma+, IL-2+) in classical delayed-type (tuberculin) hypersensitivity reactions in human skin. J Immunol 1992; 148(7):2058-61. [31]Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR, Modlin RL: Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 1991; 254(5029):277-9. [32]Mosmann TR, Coffman RL: TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu Rev Immunol 1989; 7:145-73. [33]Mosmann TR, Sad S: The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17(3):138-46. [34]Seder RA, Paul WE: Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu Rev Immunol 1994; 12:635-73. [35]Chonmaitree T, Baron S. Bacteria and viruses induce production of interferon in the cerebrospinal fluid of children with acute meningitis: a study of 57 cases and review. Rev Infect Dis 1991;13:1061-5. [36]Kornelisse RF, Hack CE, Savelkoul HF, van der Pouw Kraan TC, Hop WC, van Mierlo G, Suur MH, Neijens HJ, de Groot R. Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis. Infect Immun 1997;65:877-81. [37]van Furth AM, Seijmonsbergen EM, Langermans JA, Groeneveld PH, de Bel CE, van Furth R. High levels of interleukin 10 and tumor necrosis factor alpha in cerebrospinal fluid during the onset of bacterial meningitis. Clin Infect Dis. 1995;21:220-2. [38]Hsieh SL, Chen NJ, Tarbell K, Liao NS, Lai YG, Lee KH, Lee KM, Wu SC, Sytwu HK, Han SH, McDevitt H. Transgenic mice expressing surface markers for IFN-gamma and IL-4 producing cells. Mol Immunol 2000;37:281-93. [39]Wang CC, Siu LK, Chen MK, Yu YL, Lin FM, Ho M, Chu ML. Use of automated riboprinter and pulsed-field gel electrophoresis for epidemiological studies of invasive Haemophilus influenzae in Taiwan. J Med Microbiol 2001;50:277-83. [40]Irazuzta JE, de Courten-Myers G, Zemlan FP, Bekkedal MY, Rossi J, 3rd. Serum cleaved Tau protein and neurobehavioral battery of tests as markers of brain injury in experimental bacterial meningitis. Brain Res 2001;913:95-105. [41]Echchannaoui H, Frei K, Schnell C, Leib SL, Zimmerli W, Landmann R. Toll-like receptor 2-deficient mice are highly susceptible to Streptococcus pneumoniae meningitis because of reduced bacterial clearing and enhanced inflammation. J Infect Dis 2002;186:798-806. [42]Wu, S.F., Liu, T.M., Lin, Y.C. et al. (2004) Immunomodulatory effect of decoy receptor 3 on the differentiation and function of bone marrow-derived dendritic cells in nonobese diabetic mice: from regulatory mechanism to clinical implication. J. Leukoc. Biol. 75, 293-306. [43]Barenkamp SJ, Munson RS, Jr, Granoff DM. Subtyping isolates of Haemophilus influenzae type b by outer-membrane protein profiles. J Infect Dis 1981;143:668-76. [44]Sung HH, Juang JH, Lin YC, Kuo CH, Hung JT, Chen A, Chang DM, Chang SY, Hsieh SL, Sytwu HK. Transgenic Expression of Decoy Receptor 3 Protects Islets from Spontaneous and Chemical-induced Autoimmune Destruction in Nonobese Diabetic Mice. J Exp Med 2004;199:1143-51. [45]Hung JT, Liao JH, Lin YC, Chang HY, Wu SF, Chang TH, Kung JT, Hsieh SL, McDevitt H, Sytwu HK. Immunopathogenic role of T(H)1 cells in autoimmune diabetes: Evidence from a T1 and T2 doubly transgenic non-obese diabetic mouse model. J Autoimmun 2005 25, 181-192. [46]Nathan, B.R. and Scheld, W.M. New Advances in the Pathogenesis and Pathophysiology of Bacterial Meningitis. Curr. Infect. Dis. Rep. 2000; 2, 332-336. [47]Mills KH. Regulatory T cells: friend or foe in immunity to infection? Nat Rev Immunol 2004;4:841-55. [48]Diab A, Zhu J, Lindquist L, Wretlind B, Bakhiet M, Link H. Haemophilus influenzae and Streptococcus pneumoniae induce different intracerebral mRNA cytokine patterns during the course of experimental bacterial meningitis. Clin Exp Immunol 1997;109:233-41. [49]Raziuddin S, el-Awad ME, Telmesani AW, Bilal,NE, al-Janadi M. CD4+ Th2 cell response cytokine production in bacterial meningitis. J Clin Immunol 1995; 15:338-48. [50]引起Diab A, Zhu J, Lindquist L, Wretlind B, Link H, Bakhiet M. Cytokine mRNA profiles during the course of experimental Haemophilus influenzae bacterial meningitis. Clin Immunol Immunopathol 1997;85:236-45. [51]Torre D, Zeroli C, Ferraro G, Speran za F, Tambini R, Martegani R, Fiori GP. Cerebrospinal fluid levels of IL-6 in patients with acute infections of the central neverous system. Scand J Infect Dis 1992;24:787-91. [52]Paul R, Koedel U, Winkler F, et al. Lack of IL-6 augments inflammatory response but decreases vascular permeability in bacterial meningitis. Brain 2003;126:1873-82. [53]Matsuzono, Y., Narita, M., Akutsu, Y. and Togashi, T. Interleukin-6 in cerebrospinal fluid of patients with central nervous system infections. Acta Paediatr. 1995; 84, 879-883. [54]Kornelisse, R.F., Hack, C.E., Savelkoul, H.F. et al. Intrathecal production of interleukin-12 and gamma interferon in patients with bacterial meningitis. Infect. Immun. 1997; 65, 877-881. [55]Raziuddin, S., el-Awad, M.E. and Mir, N.A. Bacterial meningitis: T cell activation and immunoregulatory CD4+ T cell subset alteration. J. Allergy Clin. Immunol. 1991;87, 1115-1120. [56]Marks MI, Ziegler EJ, Douglas H, Corbeil LB, Braude AI. Induction of immunity against lethal Haemophilus influenzae type b infection by Escherichia coli core lipopolysaccharide. J Clin Invest 1982;69:742-9. [57]Brodeur BR, Tsang PS, Hamel J, Larose Y, Montplaisir S. Mouse models of infection for Neisseria meningitidis B,2b and Haemophilus influenzae type b diseases. Can J Microbiol 1986;32:33-7. [58]Rundell A, DeCarlo R, HogenEsch H and Doerschuk P. The humoral immune response to Haemophilus influenzae type b: a mathematical model based on T-zone and germinal center B-cell dynamics. J Theor Biol 1998; 194:341-81. [59]Koedel U, Pfister HW. Models of experimental bacterial meningitis. Role and limitations. Infect Dis Clin North Am 1999; 13:549-77, vi. [60]Mercado R, Vijh S, Allen SE, Kerksiek K, Pilip IM, Pamer EG. Early programming of T cell populations responding to bacterial infection. J Immunol 2000; 165:6833-9. [61]Corbin GA, Harty JT. Duration of infection and antigen display have minimal influence on the kinetics of the CD4+ T cell response to Listeria monocytogenes infection. J Immunol 2004;173:5679-87. [62]Foxwell, A.R., Kyd, J.M., Karupiah, G. and Cripps, A.W. CD8+ T cells have an essential role in pulmonary clearance of nontypeable Haemophilus influenzae following mucosal immunization. Infect. Immun. 2001; 69, 2636-2642. [63]Varma TK, Lin CY, Toliver-Kinsky TE, Sherwood ER. Endotoxin-induced gamma interferon production: contributing cell types and key regulatory factors. Clin Diagn Lab Immunol 2002;9:530-43. [64]Andersson, A., Dai, W.J., Di Santo, J.P. and Brombacher, F. (1998) Early IFN-gamma production and innate immunity during Listeria monocytogenes infection in the absence of NK cells. J. Immunol. 161, 5600-5606. [65]Assenmacher M, Schmitz J, Radbruch A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-gamma and in interleukin-4-expressing cells. Eur J Immunol 1994;24:1097-101. [66]Weiser JN, Pan N. Adaptation of Haemophilus influenzae to acquired and innate humoral immunity based on phase variation of lipopolysaccharide. Mol Microbiol 1998; 30:767-75. [67] Caramalho I, Lopes-Carvalho T, Ostler D, Zelenay S, Haury M and Demengeot J. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide. J Exp Med 2003; 197:403-11. [68]King PT, Hutchinson PE, Johnson PD, Holmes PW, Freezer NJ, Holdsworth SR. Adaptive immunity to nontypeable Haemophilus influenzae. Am J Respir Crit Care Med 2003;167:587-92. [69]Murphy TF. Immunity to nontypeable Haemophilus influenzae: elucidating protective responses. Am J Respir Crit Care Med 2003; 167:486-7. [70]Buchmeier NA, Schreiber RD. Requirement of endogenous interferon-gamma production for resolution of Listeria monocytogenes infection. Proc Natl Acad Sci U S A 1985; 82:7404-8. [71]Ferrick DA, Schrenzel MD, Mulvania T, Hsieh B, Ferlin WG and Lepper H. Differential production of interferon-gamma and interleukin-4 in response to Th1- and Th2-stimulating pathogens by gamma delta T cells in vivo. Nature 1995; 373:255-7. [72]Cosmi L, Liotta F, Angeli R, et al. Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood 2004; 103:3117-21. [73]Shedlock DJ, Whitmire JK, Tan J, MacDonald AS, Ahmed R, Shen H. Role of CD4 T cell help and costimulation in CD8 T cell responses during Listeria monocytogenes infection. J Immunol 2003;170:2053-63. [74]Schiemann M, Busch V, Linkemann K, Huster KM, Busch DH. Differences in maintenance of CD8+ and CD4+ bacteria-specific effector-memory T cell populations. Eur J Immunol 2003;33:2875-85. [75]Rao, V.K., Krasan, G.P., Hendrixson, D.R., Dawid, S., St Geme, J.W. 3rd. Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae. FEMS Microbiol. Rev. 1999;23, 99-129. [76]Turk, D.C. The pathogenicity of Haemophilus influenzae. J. Med. Microbiol. 1984; 18, 1-16. [77]Weiser, J.N., Pan, N. Adaptation of Haemophilus influenzae to acquired and innate humoral immunity based on phase variation of lipopolysaccharide. Mol. Microbiol. 1998;30, 767-775. [78]Kurono Y, Yamamoto M, Fujihashi K, et al. Nasal immunization induces Haemophilus influenzae-specific Th1 and Th2 responses with mucosal IgA and systemic IgG antibodies for protective immunity. J Infect Dis 1999; 180:122-32. [79]Forsgren J, Samuelson A, Ahlin A, Jonasson J, Rynnel-Dagoo B and Lindberg A. Haemophilus influenzae resides and multiplies intracellularly in human adenoid tissue as demonstrated by in situ hybridization and bacterial viability assay. Infect Immun 1994; 62:673-9. [80]Gilsdorf, J.R. Antigenic diversity and gene polymorphisms in Haemophilus influenzae. Infect. Immun. 1998;66, 5053-5059. [81]Kyd J, Cripps A. Nontypeable Haemophilus influenzae: challenges in developing a vaccine. J Biotechnol 1999; 73:103-8. [82] Foxwell AR, Kyd JM and Cripps AW. Nontypeable Haemophilus influenzae: Pathogenesis and Prevention. Microbiol. Mol. Biol. Rev. 1998; 62:294-308. [83]Poolman, J.T., Bakaletz, L., Cripps, A. et al. Developing a nontypeable Haemophilus influenzae (NTHi) vaccine. 2001;19, S108-115. [84]Kodama H, Faden H, Harabuchi Y, Kataura A, Bernstein JM and Brodsky L. Cellular immune response of adenoidal and tonsillar lymphocytes to the P6 outer membrane protein of non-typeable Haemophilus influenzae and its relation to otitis media. Acta Otolaryngol 1999; 119:377-83. [85]Neary JM, Yi K, Karalus RJ and Murphy TF. Antibodies to loop 6 of the P2 porin protein of nontypeable Haemophilus influenzae are bactericidal against multiple strains. Infect Immun 2001; 69:773-8. [86]Hotomi M, Yamanaka N, Shimada J, et al. Intranasal immunization with recombinant outer membrane protein P6 induces specific immune responses against nontypeable Haemophilus influenzae. Int J Pediatr Otorhinolaryngol 2002; 65:109-16. [87]Kyd JM, Cripps AW, Novotny LA and Bakaletz LO. Efficacy of the 26-Kilodalton Outer Membrane Protein and Two P5 Fimbrin-Derived Immunogens To Induce Clearance of Nontypeable Haemophilus influenzae from the Rat Middle Ear and Lungs as Well as from the Chinchilla Middle Ear and Nasopharynx. Infect. Immun. 2003; 71:4691-4699. [88]Novotny LA, Bakaletz LO. The Fourth Surface-Exposed Region of the Outer Membrane Protein P5-Homologous Adhesin of Nontypable Haemophilus influenzae Is an Immunodominant But Nonprotective Decoying Epitope. J Immunol 2003; 171:1978-1983. [89]Duim B, Vogel L, Puijk W, et al. Fine mapping of outer membrane protein P2 antigenic sites which vary during persistent infection by Haemophilus influenzae. Infect Immun 1996; 64:4673-9. [90]Badr WH, Loghmanee D, Karalus RJ, Murphy TF and Thanavala Y. Immunization of mice with P6 of nontypeable Haemophilus influenzae: kinetics of the antibody response and IgG subclasses. Vaccine 1999; 18:29-37. [91]Kyd JM, Cripps AW. Potential of a novel protein, OMP26, from nontypeable Haemophilus influenzae to enhance pulmonary clearance in a rat model. Infect Immun 1998; 66:2272-8. [92]Bertot GM, Becker PD, Guzman CA and Grinstein S. Intranasal vaccination with recombinant P6 protein and adamantylamide dipeptide as mucosal adjuvant confers efficient protection against otitis media and lung infection by nontypeable Haemophilus influenzae. J Infect Dis 2004; 189:1304-12. [93]Hou Y, Gu XX. Development of peptide mimotopes of lipooligosaccharide from nontypeable Haemophilus influenzae as vaccine candidates. J Immunol 2003; 170:4373-9. [94]Assenmacher M, Schmitz J, Radbruch A. Flowcytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukine-10 in interferon-gamma and in interleukin-4-expressing cells. Eur J Immunol 1994;24:1097-101. [95]Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680-5.
|