參考文獻
[1] Aselone,P.M. and Moore,R.H., An Extension of the Newton-Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501,1966.
[2] Bauer,L., Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, 1970.
[3] B. Bunow and J. P. Kernevez, Numerical exploration of bifurcating branches of solutions to reaction-diffusion equations from immobilized enzyme kinetics, to appear.
[4] Choi,Y.S., Jen,K,C.,(簡國清) and McKenna,P.J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, 1991.
[5] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 1971.
[6] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
[7] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York,1977.
[8] D. W. Decker and H. B. Keller, Solution branching—A constructive technique, in New Approaches to Nonlinear Problems in Dynamics (P. J. Holmes, Ed.) SIAM Publ., Philadelphia, 1980.
[9] G. Iooss and D. Joseph. Elementary stability and bifurcation theory, Springer Verlag, New York, 1980.
[10] H. B. keller, Numerical solution of bifurcation and nonlinear eigenvalue problems, in Applications of Bifurcation Theory, (P. H. Rabinowitz, Ed.) Academic, New York, 1977.
[11] I. Stakgold, Branching of solutions of nonlinear equations, SIAM Rev. 1971.
[12] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell,1987.
[13] Jen,K.C.(簡國清), The Stability and Convergence of a Crank- Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol.23, No.2, 1995.
[14] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48,1972.
[15] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press,1977.
[16] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag,1987.
[17] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel.1984.
[18] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York.1983.
[19] L. Bauer, H. B. Keller, and E. L. Reiss, Multiple eigenvalues lead to secondary bifurcation, SIAM Rev,1975.
[20] M. G. Grandal, An introduction to constructive aspects of bifurcation and the implicit function theorem in Applications of Bifurcation Theory, (T. H. Rabinowitz, Ed.) Academic, New York,1977.
[21] M. Kubicek, Dependence of solution of nonlinear systems on a parameter, A.C.M. Trans. Math. Software,1976.
[22] M. Kubicek and M. Marek, Evaluation of limit and bifurcation points for algebraic and nonlinear boundary value problems, Appl. Math. Comput.1979.
[23] M. Kubicek and V. Hlavacek, General parameter mapping technique—a procedure for solution of non-linear boundary value problems depending on an actual parameter , J. Inst. Math. App. 12 ,1973.
[24] M. Kubicek and V. Hlavacek, Solution of nonlinear boundary value problems—Va and Vb. A novel method: general parameter mapping (GPM) and predictor-corrector GPM method, Chem. Eng. Sci. 27 ,1972.
[25] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17,1980.
[26] T. L. Saaty and J. Bram, Non-linear Mathematics, McGraw-Hill, New York,1964.
[27] V. Hlavacek, M. Marek and M. Kubicek, Modeling of chemical reactors—X.Multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle, Chem, Eng. Sci. 23,1968.
[28] Wacker, H.(ed-), Continuation Methods, Academic Press, New York,1978.
[29] W. C. Rheinboldt and J. V. Burkardt, A program for a locally-parameterized continuation process, Technical Report ICMA-81-30, Inst. For Comput. Math. and Appl. Univ. of Pittsburgh,1981.
[30]黃治平,非線性代數方程組分歧點與解分支之探討,新竹教育大學碩士論文,2004.[31]林慧芬,非線性邊界值問題分歧點計算及其解路徑延拓,新竹教育大學碩士論文,2005.