[1] Allgower E.L. and Chien C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput, 7, pp.1265-1281, 1986.
[2] Atkinson, K.E., The numerical solution of bifurcation problems' SIAM J. Numer, Anal., 14(4), pp.584-599, 1977.
[3] Brown, K.J., Ibrahim, M,M.A. and Shivaji, R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486, 1981.
[4] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer.Math., 36, pp.1-25, 1980.
[5] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[6] Crandall, M.G. and Rabinowitz, P.H., Bifurcation, Perturbation of Simple Eihenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180, 1973.
[7] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
[8] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, pp.1-35, 1977.
[9] Castro, A and Shivaji, R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb.98A, pp.267-269, 1984.
[10] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
[11] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, 1987.
[12] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108, 1972.
[13] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977.
[14] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
[15] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, 1984.
[16] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. 1983.
[17] Lions, P.L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24, pp.441-467, 1983.
[18] Milan Kubicek and Martin Holodniok, Algorithms for Determination of Period-Doubling Bifurcation Points in Ordinary Differential Equations, Journal of Computational Physics 70,pp.203-217, 1987.
[19] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221-237, 1980.
[20] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York),
[21] Shivaji, R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., III, pp.374-387, 1985.
[22] Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, pp.223-230, 1983.
[23] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, 1978.
[24] Wang, S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, pp.1475-1485, 1994.
[25] 黃治平, 非線性代數方程組分歧點與解分支之探討, 新竹教育大學碩士論文, 2004.[26] 林慧芬, 非線性邊界值問題分歧點計算及其解路徑延拓, 新竹教育大學碩士論文, 2005.