跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/15 23:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張定華
論文名稱:非線性常微分方程週期倍增分歧問題之數值探討
論文名稱(外文):The numerical investigation for the periodic-doubling bifurcation problem in a nonlinear ordinary differential equation
指導教授:簡國清簡國清引用關係
學位類別:碩士
校院名稱:國立新竹教育大學
系所名稱:人資處數學教育碩士班
學門:教育學門
學類:普通科目教育學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:134
中文關鍵詞:分歧點打靶法牛頓迭代法隱函數定理解分支割線猜測法分歧圖虛擬弧長延拓法Rung-Kutta 法
外文關鍵詞:Bifurcation pointShooting methodNewton''s interative methodImplicit function theoremSolution branchesSecant-predictor methodBifurcation diagramPseudo-arclength continuation methodRung-Kutta method
相關次數:
  • 被引用被引用:3
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要在探討一個具外來週期作用力的化學混合反應器模型之週期倍增分歧問題的分歧點、週期解解分支及倍週期解解分支結構.
首先,我們利用打靶法及牛頓迭代法,來推導計算出週期倍增分歧點.並以隱函數定理為基礎,運用Liapunov-schmidt降階法,虛擬弧長延拓法,割線猜測法及牛頓迭代法等數值方法,來延拓出所有通過週期倍增分歧點的解分支路徑.
最後,我們改變其中某一參數,而將其他參數固定,分別求得分歧現象與分歧點的變化.
The main purpose of this thesis is to investigate the bifurcation points , periodic solution branches and periodic-doubling solution branches of a well-mixed reactor with the Brusselator chemical reaction and external periodic forcing model .
First, we use shooting method and newton’s interative method to calculate the periodic-doubling bifurcation points .We use implicit function theorem as the foundation to quote the numerical method of the Liapunov-Schmidt reduction method, pseudo-archength continuation method, secant-predictor method, and Newton’s interative method,to continue all solution branches from periodic-doubling bifurcation points.
Finally, we change one of the parameters and fix the others to find the bifurcation phenomenon and the changes of bifurcation points .
第一章 緒論 1
第二章 分歧理論與虛擬弧長延拓法 4
2.1 分歧問題 ……………………………………………………… 4
2.2 隱函數定理與分歧理論 ……………………………………… 6
2.3 局部延拓法 …………………………………………………… 8
2.4 虛擬弧長延拓法 …………………………………………… 11
第三章 常微分方程週期倍增分歧問題的數值解法 13
3.1 週期倍增分歧點之求法……………………………………… 13
3.2 選取過週期倍增分歧點的週期解解分支延拓方向………… 28
3.3 週期解解分支的延拓………………………………………… 37
3.4 過週期倍增分歧點的倍週期解分支延拓方向與路徑……… 41
3.5 演算法………………………………………………………… 42
第四章 數值實驗 48
4.1 實驗4.1…………………………………………………… 50
4.2 實驗4.2…………………………………………………… 101
4.3 實驗4.3…………………………………………………… 120
第五章 結論 130
參考文獻 132
[1] Allgower E.L. and Chien C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput, 7, pp.1265-1281, 1986.
[2] Atkinson, K.E., The numerical solution of bifurcation problems' SIAM J. Numer, Anal., 14(4), pp.584-599, 1977.
[3] Brown, K.J., Ibrahim, M,M.A. and Shivaji, R., S-Shaped bifurcation curves, Nonlinear Analysis, T.M.A, 5, pp.475-486, 1981.
[4] Brezzi, F. ,Rappaz, J. and Raviart, P.A., Finite dimensional approximation of a bifurcation problems, Numer.Math., 36, pp.1-25, 1980.
[5] Crandall, M.G. and Rabinowitz, P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340, 1971.
[6] Crandall, M.G. and Rabinowitz, P.H., Bifurcation, Perturbation of Simple Eihenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180, 1973.
[7] Crandall, M. G. and Rabinowliz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series, 1979.
[8] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation and The Implicit Function Theorem, Application of Bifurcation Theorem, edited by P. H. Rabinowtiz, Academic Press,New York, pp.1-35, 1977.
[9] Castro, A and Shivaji, R., Uniqueness of positive solution for a class of elliptic boundary value problems, Proc. R. Soc. Edinb.98A, pp.267-269, 1984.
[10] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
[11] Jepson A.D. and Spence A., Numerical Methods for Bifurcation Problems, State of the Art in NUmeriacI Analysis, edit bu A, lserles, MJD Powell, 1987.
[12] Keller, H.B. and Langford, W.F., Iterations, perturbations and multiplicities for non-linear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108, 1972.
[13] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, 1977.
[14] Keller, H. B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987.
[15] Kupper, T., Mittelmann, H. D. and Weber, H. (eds.), Numerical Methods for Bifurcation Problems, Birkhauser, Basel, 1984.
[16] Kubicek, M. and Marek, M., Computational Merhods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York. 1983.
[17] Lions, P.L., On the existence of positive solutions of semilinear elliptic equation, SIAM Rev., 24, pp.441-467, 1983.
[18] Milan Kubicek and Martin Holodniok, Algorithms for Determination of Period-Doubling Bifurcation Points in Ordinary Differential Equations, Journal of Computational Physics 70,pp.203-217, 1987.

[19] Rheinboldt, W. C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp. 221-237, 1980.
[20] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley (New York),
[21] Shivaji, R., Remarks on an S-shaped bifurcation curve, J. Math. Analysis Applic., III, pp.374-387, 1985.
[22] Shivaji, R., Uniqueness result for a class of postione problems, Nonlinear Analysis: theory, methods and application, 7, pp.223-230, 1983.
[23] Wacker, H.(ed-), Continuation Methods, Academic Press, New York, 1978.
[24] Wang, S.H., On S-Shaped Bifurcation curves, Nonlinear Analysis: theory, methods and application, 22, pp.1475-1485, 1994.
[25] 黃治平, 非線性代數方程組分歧點與解分支之探討, 新竹教育大學碩士論文, 2004.
[26] 林慧芬, 非線性邊界值問題分歧點計算及其解路徑延拓, 新竹教育大學碩士論文, 2005.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 李素馨 (1994)。典型相關分析-專業程度、遊憩動機和基地屬性認知關係之探討,戶外遊憩研究,7(3),39-62。
2. 邱皓政 (1997)。態度測量與心理測驗發展與檢驗的新趨勢-結構方程模式(Structural Equation Modeling)的應用。世新大學學報,7,61-95。
3. 梁光余 (2003)。公立博物館的人力策略。博物館學季刊,17(4),97-103。
4. 邱皓政 (1997)。態度測量與心理測驗發展與檢驗的新趨勢-結構方程模式(Structural Equation Modeling)的應用。世新大學學報,7,61-95。
5. 陳正男、丁學勤 (2002)。銷售人員的內外控人格特質與工作滿足關係之研究。企業管理學報,52,59-97。
6. 陳正男、丁學勤 (2002)。銷售人員的內外控人格特質與工作滿足關係之研究。企業管理學報,52,59-97。
7. 梁光余 (2003)。公立博物館的人力策略。博物館學季刊,17(4),97-103。
8. 梁光余 (2003)。公立博物館的人力策略。博物館學季刊,17(4),97-103。
9. 李素馨 (1994)。典型相關分析-專業程度、遊憩動機和基地屬性認知關係之探討,戶外遊憩研究,7(3),39-62。
10. 李素馨 (1994)。典型相關分析-專業程度、遊憩動機和基地屬性認知關係之探討,戶外遊憩研究,7(3),39-62。
11. 朱斌妤、葉旭榮、黃俊英 (2002)。「志工參與行為意向模式」的建構及其在老人福利機構志工招募的應用。管理學報,19(3), 475-505。
12. 朱斌妤、葉旭榮、黃俊英 (2002)。「志工參與行為意向模式」的建構及其在老人福利機構志工招募的應用。管理學報,19(3), 475-505。
13. 邱皓政 (1997)。態度測量與心理測驗發展與檢驗的新趨勢-結構方程模式(Structural Equation Modeling)的應用。世新大學學報,7,61-95。
14. 朱斌妤、葉旭榮、黃俊英 (2002)。「志工參與行為意向模式」的建構及其在老人福利機構志工招募的應用。管理學報,19(3), 475-505。
15. 丘宏昌、林能白 (2001)。以需求理論為基礎所建立之服務品質分類。管理學報,18(2),231-253。