|
參考文獻 [1] Allgower,E.L. and Chien,C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265- 1281,1986. [2] Aselone,P.M. and Moore,R.H., An Extension of the Newton- Kantorovich Method for Sloving Nonlinear Equations with An Application to Elasticity. J. Math. Anal. l3, pp.476-501,1966. [3] Atkinson,K.E., The numerical solution of bifurcation problems, SIAM J. Numer. Anal., 14(4), pp.584-599,1977. [4] Bauer,L., Reiss,E.L., and Keller,H.B., Axisymmetric Bucking of Hollow Spheres and hemispheres, Comm. Pure Appl. Math., 23, pp. 529-568,1970. [5] Brezzi,F., Rappaz,J. and Raviart,P.A., Finite dimensional approxi- mation of a bifurcation problems, Numer. Math., 36, pp.1-25,1980. [6] Crandall,M.G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H. Rabinowitz, Academic Press, pp. 1-35,1977. [7] Crandall,M.G. and Rabinowitz,P.H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,1971. [8] Crandall,M.G. and Rabinowitz,P.H., Bifurcation, Perturbation of Simple Eigenvalues, and Linearized Stability, Archive for rational Mech. Analysis, 52, pp.161-180,1973. [9] Crandall,M.G. and Rabinowitz,P.H., Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos,C. and Bessis,D., NATO Advanced Study Institute Series,1979. [10] Iooss,G and Joseph,D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg,1989. [11] Jen,K.C.(簡國清), The Stability and Convergence of a Crank- Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol.23, No.2, pp.97-121,1995. [12] Jepson,A.D. and Spence,A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell,1987. [13] Keller,H.B., in " Recent Advances in Numerical Analysis ", Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p 73,1978. [14] Keller,H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag, 1987. [15] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited By Rabinowitz,P.H., Academic Press, pp.359-384,1977. [16] Keller,H.B. and Langford,W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems, Arch. Rational Mech. Anal., 48, pp.83-108,l972. [17] Küpper,T., Mittelmann,H.D. and Weber,H.(eds.), Numerical Methods for Bifurcation Problems, Birkhäuser, Basel,1984. [18] Kubiček,M. and Marek,M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, 1983. [19] Rheinboldt,W.C., Solution Fields of Nonlinear Equations and Continuation Methods, SIAM J. Numer. Anal., 17, pp.221-237,1980. [20] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York),1986. [21] Wacker,H.(ed),Continuation Methods, Academic Press, New York, 1978. [22] R.Seydel.,A Continuation Algorithm With Step Control, Birkhäuser Verlag Basel,1984. [23] 雷晋乾、馬亞南,分歧問題的逼近理論與數值方法,武漢大學出版社,1994. [24] 陸啟韶,分岔與奇異性,上海科技教育出版社,1997.
|