|
[1] Q. H. Ansari, A. Idzik, and J. C. Yao, Coincidence and fixed point theorems with applications, Topol. Methods Nonlinear Anal. 15(2000), 191-202. [2] K. C. Border, Fixed point theorems with applications to economics and game theory, Cambridge University Press, 1989. [3] Mircea Balaj, Weakly G-KKM mappings, G-KKM property, and minimax inequalities, J. Math. Anal. Appl. 294(2004), 237-245. [4] S. S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math. Anal. Appl. 159(1991), 208-233. [5] S. S. Chang, B. S. Lee, X. Wu, Y. J. Cho, and G. M. Lee, On the generalized quasivariational inequality problems, J. Math. Anal. Appl. 203(1996), 686-711. [6] T. H. Chang and C. L. Yen, KKM property and fixed point theorems, J. Math. Anal. Appl. 203(1996), 224-235. [7] X. P. Ding, Coincidence theorems in topological spaces and their applications, applied. Math. Lett. 12(1999), 99-105. [8] X. P. Ding, Existence of solutions for quasi-equilibrium problems in noncompact topological spaces, Comput. Math. Appl. 39(2000), 13-21. [9] X. P. Ding and J. Y. Park, Fixed points and generalized vector equilibrium problems in generalized convex spaces, Indian J. Pure Appl. Math. 34(6)(2003), 973-990. [10] K. Fan, A generalization of Tychonoff’s fixed point theorem, Math. Ann. 142(1961),305-310. [11] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann. 266(1984),519-537. [12] B. Knaster, C. Kuratowski, and S. Mazurkiewicz, Ein Beweis des Fixpunksatzes fur n-dimensionale simplexe, Fund. Math. 14(1929),132-137. [13] Y. L. Lee, G-S-KKM theorem and its applications, Graduate Institute of Mathematics and Science, NHCTC, Hsin Chu, Taiwan. (2003) [14] F. J. Liu, On a form of KKM principle and supinfsup inequalities of von Neumann and Ky Fan type, J. Math. Anal. Appl. 155(1991), 420-436. [15] L. J. Lin, Applications of a fixed point theorem in G-convex space, Nonlinear Anal. 46(2001), 601-608. [16] L. J. Lin, Q. H. Ansari, and J. Y. Wu, Geometric properties and coincidence theorems with applications to generalized vector equilibrium problems, J. Optim. Theory Appl. 117(1)(2003), 121-137. [17] L. J. Lin and H. I. Chen, Coincidence theorems for family of multimaps and their applications to equilibrium problems, J. Abstr. Anal. 5(2003), 295-305. [18] L. J. Lin and S. Park, On some Generalized quasi-equilibrium problems, J. Math. Anal. Appl. 224(1998), 167-181. [19] L. J. Lin, System of coincidence theorems with applications, J. Math. Anal. Appl. 285(2003), 408-418. [20] L. J. Lin and W. P. Wan, KKM type theorems and coincidence theorems with applications to the existence of equilibria, J. Optim. Theory Appl. 123(1)(2004), 105-122. [21] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97(1983), 151-201. [22] Y. J. Lin and G. Tina, Minimax inequalities equivalent to the Fan-Knaster- Kuratowski-Mazurkiewicz theorem, Appl. Math. Optim. 28(1993), 173-179. [23] S. Park, Foundations of the KKM theory via coincidences of composites of upper semi-continuous maps, J. Korean Math. Soc. 31(1994), 164-176. [24] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex spaces, J. Math. Anal. Appl. 197(1996), 173-187. [25] S. Park and H. Kim, Functions of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209(1997), 551-571. [26] N. Shioji, A further generalization of the Knaster-Kuratowski-Mazurkiewicz theorem, Proc. Amer. Math. Soc. 111(1991), 187-195. [27] G. Q. Tina, Generalized KKM theorem, minimax inequalities and their applications, J. Optim. Theory Appl. 83(1994), 375-389. [28] G. Tina and J. Zhou, Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization, J. Math. Econom. 24(1995), 281-303. [29] Z. T. Yu and L. J. Lin, Continuous selection and fixed point theorems, Nonlinear Anal. 52(2003), 445-453.
|