跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 05:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:康信雄
研究生(外文):Hsin-Hsiung Kang
論文名稱:利用轉換器回授方式於5.8-GHz之CMOS低雜訊放大器的設計
論文名稱(外文):Design of CMOS Low Noise Amplifier with Transformer-Feedback for 5.8-GHz WLAN
指導教授:邱建文邱建文引用關係
指導教授(外文):Chien-Wen Chiu
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:122
中文關鍵詞:低雜訊放大器單石轉換器低電壓設計中和化轉換器回授
外文關鍵詞:LNAmonolithic transformerlow-voltage designneutralizationtransformer-feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:214
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一個應用於5.8 GHz無線區域網路的低雜訊放大器之設計。利用TSMC 0.18μm CMOS的製程,為了達到1伏特低電壓與低功率的需求,吾人利用轉換器回授中和化法來降低閘-汲極電容(Cgd)所產生的密勒效應,以進行放大器設計。首先本論文將詳細描述轉換器回授放大器設計的原理及方法,接著設計差動式單石轉換器的結構,除了利用電磁模擬程式模擬此元件高頻的特性,分析其電路特性,並利用集總元件來建立差動式轉換器的等效電路模型。接著將所得高頻模擬結果,置入放大器電路進行設計,研究與探討單石電感與轉換器的寄生效應及損耗與對電路影響。考量被動元件實際電磁模擬結果與最佳化設計後,本論文所使用的電路架構,經過電路模擬結果可達到功率增益為13.825 dB、雜訊指數約為2.7 dB、輸入損耗反射係數為-22.683 dB、輸出損耗反射係數為-13.834 dB、逆向隔離度為-38.343 dB及IIP3為6.8 dBm,最後並進行電路佈局與實驗討論。
In this thesis, we present the whole design of a low noise amplifier in a 0.18 μm CMOS process for 5.8 GHz wireless local area network application. To operate at 1V low-voltage supply and 16 mW low-power consumption, transformer-feedback technique is employed here to neutralize the gate-drain overlap-capacitance of a MOSFET, i.e., Miller effect. First in this paper, the design approach of the transformer-feedback LNA is described in detail. Second, differentially monolithic-transformer structure is designed, analyzed, and its lumped-element equivalent circuit model is also proposed to characterize its performance. Then, parasitic effect of lossy monolithic-inductor and transformer were studied and included in the simulation of the whole practical design. Their influences on noise and power gain are discussed and then circuit optimization is performed. The simulation results of final design show that the real design can achieve a power gain of 13.285 dB, noise figure of 2.7dB, input return loss of -22.683 dB, output return loss of -13.836 dB, reverse isolation of -38.343 dB, and input third-order intercept-point of 6.8 dBm. Finally, the low voltage supply LNA based on transformer-feedback technique and internal input-matching circuit is layouted and measurement set-up is implemented to verify its performance.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
1.3 論文組織 4
第二章 射頻低雜訊放大器的原理 5
2.1 雜訊的種類與雜訊指數 5
2.2 積體電路內部的雜訊來源 8
2.3 穩定度與線性度的考量 11
2.4 降低Cgd影響之電路架構 14
第三章 轉換器回授之低雜訊放大器的設計分析 26
3.1 簡介 26
3.2 轉換器回授之低雜訊放大器分析推導 26
3.3 轉換器回授之低雜訊放大器設計 33
3.3.1 功率消耗決定之方法 33
3.3.2 電晶體寬度決定之方法 34
3.3.3 直流偏壓電路設計 36
3.3.4 匹配電路設計 37
3.3.5 最佳化雜訊阻抗設計 39
3.4 電路模擬結果 40
第四章 單石平面電感與轉換器的設計分析 55
4.1 簡介 55
4.2 單石平面電感設計與模擬結果 56
4.3 提升品質因數的方法 57
4.4 單石轉換器設計與模擬結果 58
4.5 轉換器模型之建立、分析與模擬 60
4.5.1 轉換器模型分析 60
4.5.2 轉換器模型模擬結果 66
4.6 總結 67
第五章 考慮被動元件寄生效應之設計、佈局與實驗考量 88
5.1 前言 88
5.2 實際匹配電路設計與模擬 88
5.3 實際電路之佈局與量測的方法 91
第六章 結論 107
參考文獻 109
[1]T. H. Lee, The Design of CMOS Radio-Frequency Integrates Circuits, Cambridge U.K., Cambridge University Press, 1998.

[2]D.K. Shaffer, and T. Lee, “A 1.5GHz CMOS low noise amplifier,” IEEE J. Solid-State Circuits, vol. 32, no.5, pp. 745-759, May 1997.

[3]D. J. Cassan, and J. R. Long, “A 1-V transformer-feedback low-noise amplifier for 5-Hz wireless LAN in 0.18-μm CMOS,” IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 427-435, Mar. 2003.

[4]唐政,“深入802.11無線網路通訊協定與應用”,文魁資訊有線股份公司,民國93年.

[5]B. Razavi, RF Microelectronics, Prentice Hall Communication Engineering and Emerging Technology Series, Dec. 2003.

[6]D. M. Pozar, Microwave and RF Wireless System, John Wiley & Sons, Inc., 2001.

[7]D. K. Misra, Radio-Frequency and Microwave Communication Circuits Analysis and Design, Wiley-interscience, 2001.

[8]T. Ytterdal, Y. Cheng, and T. A. Fjeldly, Device Modeling for Analog and RF CMOS Circuit Design, John Wiley & Sons Ltd, Feb., 2004.

[9]T. Manku, “Microwave CMOS-Device Physics and Design,” IEEE J. Solid-State Circuits, vol. 34, NO. 3, pp. 277-285, March 1999.

[10]Y. Lin, L. Wang, M. Obrecht, and T. Manku, “Quasi-3D device simulations for the microwave noise characterization of MOS devices,” in Proc. IEEE Int. Electron Device Meeting, pp. 77-80, Dec. 1998.

[11]C. C. Tang, C. H. Wu, S. I. Liu, “Miniature 3-D Inductors in Standard CMOS Process,” IEEE J. Solid-State Circuits, vol. 37, no. 4, pp. 471-480, Apr. 2002.

[12]H. M. Hsu, “Analytical Formula for Inductance of Metal of Various Widths in Spiral Inductors,” IEEE Transactions on Devices, vol. 51, no. 8, pp. 1343-1346, Aug. 2004.

[13]楊心運,周正豪,陽淵荏,盧銘祥,李汪哲及邱建文,“微波被動元件最佳化設計”,國立宜蘭大學電子工程系專題報告,民國95年1月.

[14]C. P. Yue, C. Ryu, J. Lau, T. H. Lee, and S. S. Wong, “A physical model for planar spiral inductors on silicon,” in IEEE IEDM, pp. 155-158, Dec. 1996.

[15]Y. Cao, R. A. Groves, X. Huang, N. D. Zamdmer, J. O. Plouchart, R. A. Wachnik, T. J. King, and C. Hu, “Frequency-Independent Equivalent-circuit Model for On-Chip Spiral Inductors,” IEEE J. Solid-State Circuits, vol. 38, no.3, pp. 419-426, Mar. 2003.

[16]Y. S. Lin, T. Wang, and S. S. Lu, “Temperature-Dependence of Noise Figure of Monolithic RF Transformers on a Thin Silicon Substrate,” in IEEE Ratio and Wireless Conference, pp.103-106, Sept. 2004.

[17]W. Simburger, H. D. Wohlmuth, P. Weger, and A. Heinz, “A Monolithic Trtansformer Coupled 5-W Silicon Power Amplifier with 59% PAE at 0.9 GHz,” IEEE J. Solid-State Circuits, vol. 34, pp. 1881-1892, Dec. 1999.

[18]D. Kehrer, W. Simburger, H. D. Wohlmuth, and A. L. Scholtz, “Modeling of Monolithic Lumped Planar Transformers up to 20 GHz,” IEEE Custom Integrated Circuits Conference, pp. 401-404., May 2001.

[19]G. Klments , M. Bhagat, D. Jessie, and N. Frederick, “Analysis and Circuit Modeling of On-Chip Transformer,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp. 167-170, Sept. 2004.

[20]C. H. Wu , C. C. Tang, and S. I. Liu, “Analysis of On-Chip Spiral Inductors Using the Distributed Capacitance Model,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 471-480, June 2003.

[21]蔡第奇,“平衡式元件之向量網路分析儀量測技術”,國立中山大學電機工程學系碩士論文,民國91年6月.

[22]D. E. Bockelman, and W. R. Eisenstadt, “Pure-Mode Network Analyzer for On-Wafer Measurements of Mixed-Mode S-Parameters of Differential Circuits,” IEEE Transaction on Microwave Theory and techniques, vol. 45, no. 7, pp. 1071-1076, July 1997.

[23]D. E. Bockelman, and W. R. Eisenstadt, “Calibration and Verification of the Pure-Mode Vector Network Analyzer,” IEEE Transaction on Microwave Theory and techniques, vol. 46, no. 7, pp. 1009-1012, July 1998.

[24]A. Tasic, W. A. Serdijn, and J. R. Long, “Concept of transformer-feedback degeneration of low-noise amplifiers,” in IEEE ISCAS, vol. 1, pp. 421-424, May 2003.

[25]C. C. Tang, and S. I. Liu, “Low-voltage CMOS low-noise amplifier using planar-interleaved transformer,” Electronics Letters, vol. 37, no. 8 pp. 497-498, Apr. 2001.

[26]C. L. Hsiao, R. M. Weng, and K. Y. Lin, “A 1V Fully Differential CMOS LNA for 2.4GHz Application,” in IEEE ISCAS, vol. 1, pp. 245-248, May 2003.

[27]H. W. Chiu, and S. S. Lu, "A 2.17dB NF, 5 GHz Band Monolithic CMOS LNA with 10 mW DC Power Consumption," in IEEE VLSI Symp. Deg., pp. 226-229, June 2002.

[28]J.R. Long, “Monolithic transformers for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sept. 2000.
[29]O. EL-Gharnitic, E. Kerherve, J. B. Begueret, and P. Jarry, “Modeling of integrated Monolithic for Silicon RF IC,” in IEEE ICECS, pp. 137-140, Dec. 2004.

[30]Y. S. Lin, “Implementation of Perfect-Magnetic-Coupling Ultralow-Loss Transformer in RFCMOS Technology,” IEEE Electron Device Letter, vol. 26 no.11, pp. 832-835, Nov. 2005.

[31]M. S. Kim; J. S. Yi; H. J. Yoo, “Parasitic Effect Analysis for a Differential LNA Design,” in IEEE ICM, pp. 164-166 Dec. 2003.

[32]T. K. K. Tsang, and M. N. El-Gamal, “Gain controllable very low voltage 8-9 GHz integrated CMOS LNA’s,” in IEEE RFIC Symp. Dig., pp. 205-208, 2002.

[33]S. Pennisi, S. Scacianoce, and G. Palmisano, ”A New Design Approach for Variable-Gain
Low noise Amplifiers, ” in IEEE RFIC Symp. Dig., pp. 139-142, 2000.

[34]R. C. Liu, C. R. Lee, H. Wang, and C. K. Wang, ”A 5.8GHz Two-Stage High Linearity Low Voltage Low Noise Amplifier in a 0.35-μm CMOS Technology,” IEEE RFIC Symp., pp. 221-224, June 2002.

[35]D. J. Cassan, and J. R. Long, “A 1V 0.9dB low-noise amplifier for 5-6GHz WLAN in 0.18-μm CMOS,” IEEE Custom Integrated Circuits Conference, pp. 419-422, May 2002.

[36]N. J. Oh, and S. G. Lee, “11-GHz CMOS differential VCO with back-gate transformer feedback,” Microwave and Wireless Components Letters, vol. 11, no. 11, pp. 733-735, Nov. 2005.

[37]R. G. Meyer, and W. D. Mack, “A 1-GHz BiCMOS RF Front-end IC,” IEEE J. Solid-State Circuits, vol. 29, no.3, pp. 350-355, March 1994.

[38]Hashemi, H.; Hajimiri, A., “Concurrent multiband low-noise amplifiers-theory, design, and applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 2, pp. 288-301, Jan. 2002.

[39]I. Kwon, M. Je, K. Lee, and H. Shin, “A Simple and Analytical Parameter Extraction Method of a Microwave MOSFET,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 6, pp. 1503-1509, June 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top