跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 08:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇菁玉
研究生(外文):Su Ching-Yu
論文名稱:熟成對穀類釀造酒的影響-以小米酒為例
論文名稱(外文):The effect of aging on cereal-based alcoholic beverages:millet wine as an example
指導教授:楊景雍楊景雍引用關係
指導教授(外文):Yang Jing-Iong
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:小米酒熟成混濁酚類化合物抗氧化
外文關鍵詞:millet wine、aging、haze、phenolic compounds、antioxidant activity
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1997
  • 評分評分:
  • 下載下載:477
  • 收藏至我的研究室書目清單書目收藏:0
澄清飲料是指至消費者飲用前產品維持清澈。對澄清飲料而言,混濁和沉澱物被認為是一個品質不佳的象徵。因此,評估和去除混濁物是對飲料中是很重要的問題。小米酒澄清可藉微過濾改善。但是,混濁仍然出現在已過濾冷藏(熟成期間)的小米酒裡。由於學界尚未有針對小米酒在熟成的影響進行探討,本研究重點為小米酒在熟成期間混濁不穩定的形成以及成份特性變化,並量測不同時期之抗氧化性與酚類含量。
小米酒所含蛋白質經分析顯示其分子量主要的分布從10 kDa至60 kDa;而4℃熟成期間檢視其蛋白質成分發現,20 kDa以下蛋白質易生成混濁顆粒或沉澱。二維蛋白質電泳的結果發現,酒液經添加1.0 g/L單寧酸沉降處理後,20 kDa以下蛋白質幾乎沉降移除。推測小米酒蛋白質20 kDa以下是屬易生混濁。
4°C熟成期間對小米酒量測抗氧化力,包括亞麻油酸自氧化抑制能力、還原力、DPPH自由基清除力和螯合亞鐵離子能力,並利用HPLC分析所含酚類。並分析酚類化合物對抗氧化力的貢獻;結果顯示,顯示總酚、類黃酮、易生渾濁酚(haze-active polyphenol)含量與還原力有較高相關性。
Clear beverages are intended to remain clear until they are purchased and consumed. Hazes and sediments are generally recognized as unsatisfactory qualities for such beverages. Therefore, assessment and removal of haze-active material are important issues for beverage quality. Millet wine is a traditional fermented beverage consumed in some regions of Eastern Asia. The wine is made from steamed, dehulled millet (or combined with other cereals) by parallel fermentation with koji, which is a source of saccharifying enzymes, and yeasts, which produce ethanol from glucose. In the past, millet wine in Taiwan was a semi-opaque alcoholic beverage with a hazy appearance and foxtail millet (Setaria italica) was usually utilized for the brewing process. The clarity of millet wine can be improved by microfiltration. However, haze still develops in filtered millet wine during refrigerated storage. The objective of this research was to investigate the physicochemical changes of millet wine during aging at 4°C and to characterize some proteins that are involved in haze and sediment formation.
This study presents information on the effect of aging on the physicochemical change during storage at 4°C. The pH and ethanol content of millet wine were stable but the color turned from brown to darker brown during storage. Development of haze and sediment were observed. The levels of proteins, polyphenols, and carbohydrates in solution in the millet wine exhibited quantitative changes. Decreases in the amounts of polyphenols and proteins presumably resulted from polyphenol-protein association, which plays a key role in haze formation.
The SDS-PAGE pattern of fresh millet wine proteins indicated that the molecular weight distribution of the prominent proteins ranged from 10 kDa to 60 kDa. Some distinct protein bands ranging from 14 kDa to 30 kDa were seen, including 14, 18, 25, 27 and 29 kDa. In addition, four bands ranging from 30 kDa to 45 kDa (31, 34, 43 and 45 kDa) and some bands with molecular weights over 45 kDa were observed. These polypeptides, which originate from millet proteins, are the products of the proteolytic and chemical modifications that occur during brewing. Moreover, the TA haze induction method, in which tannic acid is added to test samples, has the advantage that it only responds to proteins that are able to react with haze-active polyphenols. The results of two-dimension SDS-PAGE showed that proteins with molecular weights below 20 kDa(LMW proteins)almost completely disappeared in the samples treated with 1.0 g/L TA. The results demonstrate millet wine proteins with molecular weights below 20 kDa are haze-active and can form TA-protein hazes and sediments.
This research presents information related to millet wine aging during a 10-month storage at 4°C. In this study, total antioxidant, reducing, free radical scavenging, and ferrous ion chelating power were determined in traditional millet wines (in Taiwan) comparing with synthetic antioxidants, such as α-tocoperol and butylated hydroxytoluene (BHT). Seven individual phenolic compounds including gallic acid, (+)-catechin, vanillic acid, caffeic acid, ρ-coumaric acid, ferulic acid, and gentisic acid were identified and quantified by HPLC. This study aimed to compare the antioxidant properties of millet wines with different periods of aging, with the measurements including the ability to inhibit auto-oxidation of linoleic acid, reducing capacity, ferrous ion chelating power and scavenging activity on free radicals DPPH‧. Individual phenolic compounds in these wines were identified and quantified by HPLC to analyze their contributions to the antioxidant activities. Results indicated that millet wines exhibited high antioxidant power, and that total antioxidant activity, reducing capacity and free radical scavenging activity were highly correlated with total phenolic content.
中文摘要………………………………………………………………… Ⅰ
英文摘要…………………………………………………………………Ⅲ
謝辭………………………………………………………………............Ⅵ
目錄………………………………………………………………………Ⅶ
圖目錄……………………………………………………………………Ⅸ
表目錄……………………………………………………………………ⅩⅠ
壹、文獻整理………………………………………………………………1
一、酒類…………………………………………………………………1
二、小米與小米酒……………………………………………………...14
三、造成飲料混濁的原因……………………………………………...16
四、抗氧化性測定法…………………………………………………..21
貳、材料與方法…………………………………………………………..25
一、材料………………………………………………………………..25
二、實驗儀器…………………………………………………………...25
三、藥品……………………………………………………………….26
四、實驗方法………………………………………………………….30
(一)小米酒釀製方法………………………………………….30
(二)實驗流程………………………………………………….31
五、分析方法………………………………………………………….32
六、蛋白質方法……………………………………………………….38
七、抗氧化活性測定………………………………………………….43
八、酒液中酚類物質之鑑定………………………………………….45
九、二維膠體電泳…………………………………………………….47
十、胺基酸分析……………………………………………………….53
参、結果與討論………………………………………………………….54
一、小米酒熟成期間成份變化……………………………………….54
二、小米酒在4 ℃熟成期間的蛋白質電泳分析…..…………………75
三、酒液中酚類(phenolic compounds)物質之鑑定……………82
四、抗氧化性之分析…………………………………………………93
肆、結論…………………………………………………………………103
伍、參考文獻……………………………………………………………105
國庫署菸酒管理法 (2004)。http://www.nta.gov.tw/dbmode93/ShowContent.ASP?CatID=33。
黃正財 (1980)。酒類之熟成與調熟,製酒科技專論彙編,2:7-13。
黃及時 (1994)。糖化後發酵條件之探討,製酒科技專論彙編,16:209-232
劉桂郁 (1997)。中國米類酒之釀造,食品工業,29(9):26-32。
劉益善 (1993)。中國傳統酒精飲料製造技術之特性,製酒科技專論彙編,15:71-79。
薛添福 (1992)。從釀酒過程中談米類釀造酒的熟成,製酒科技專論彙編,
14:71-77。
林讚峰 (1994)。酵母菌對酒類香氣生成之貢獻,製酒科技專論彙編,16:1-24。
林讚峰 (1996)。啤酒品質的安定化(二)化學性混濁之預防,製酒科技專論彙編,18:38-52。
歐陽港生 (1991)。中國傳統蒸餾酒的色香味及品評,製酒科技專論彙編。13:67-78。
胡鳳綬 (1988)。酒類中之香氣成分,製酒科技專論彙編,10:139-174。
胡鳳綬 (1994)。酒中之酚類成分,製酒科技專論彙編,16:299-304。
潘書毓 (2003)。台灣產山藥之酚類含量及抗氧化特性與加工的影響,中國文化大學生活應用科學研究所。
張為憲、李敏雄、呂政義 (1995)。食品化學。p.81-93。華香園出版社。台北。
台灣菸酒公司花蓮酒廠 (2006)。http://www.digarts.com.tw/ttl/p-5.htm。
日本釀造協會 (1977) 新版釀造成分一覽,pp.222-225,pp.309-313。

Adler-Nissen, J. (1979) Determination of the Degree of Hydrolysis of Food
Protein Hydrolysates by Trinitrobenzenesulfonic Acid. J. Agric. Food
Chem. 27, 1256-62.

Afzal, M., Kawase, M., Nakayama, H. and Okuno, K. (1996) Variation in
electrophoregrams of total seed protein and Wx protein in foxtail
millet. In: Progress in New Crops. J. Janick, Ed. ASHS Press, Alexandria,
VA. Pp. 191-195.

Asaf , A. Q. Burger, W. C. and Prentice, N. (1979) Polyphenols and
Pyrazines in Beer During Aging. J. Am. Soc. Brew. Chem. 37, 161-163.

Asano, K., Shinagawa, K. and Hashimoto, N. (1982) characterization of
haze-forming proteins of beer and their roles in chill haze formation. J.
Am. Soc. Brew. Chem. 40, 147-154.
Anqi, Z., Ping, T.C., Yan, S. L., Walter, K. K. H. and Chen, Z. (1997) Inhibitory effect of jasmine green tea epicatechin isomers on LDL-oxidation. J. Nutr. Biochem. 8, 334-340.
Awolumate, E. O. (1983) Accumulation and quality storage protein in
developing cowpea, mung bean and soya bean seeds. J. Agric. Food Chem. 34, 1351-1357.

Baxter, N. J., Lilley, T. H., Haslam, E. and Williamson, M. P. (1997) Multiple interactions between polyphenols and a salivary proline-rich protein repeat result in complexation and precipitation. Biochemistry 36,
5566-5577.

Belleau, G. and Dadic, M. (1985) Application of high-performance liquid
chromatography in brewing. II. analysis of total carbohydrate in beer. J. Am. Soc. Brew. Chem. 43, 47-53.

Bradford, M. A. (1976) A rapid and sensitive method for the quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding. Anal. biochem. 72, 248-254.

Chang, A. C. and Chan, F. C. (2002) The application of 20 kHz ultrasonic waves to accelerate the aging of different wines. Food Chem. 79, 501-506.

Chang, K. C. (1968) Archeology of ancient China. Science 162, 519-526.

Cook, N. C. and Samman, S. (1996) Flavonoids-Chemistry, metabolism,
cardioprotective effects, and dietary source. J. Nutr. Biochem. 7, 66-76。

Coultate, T. P. (1990) Food: The Chemistry of lts Components, 2nd
ed. The Royal Society of Chemistry, p. 137-149

Dadic, M. and Belleau, G. (1980) Beer Haze. I. Isolation and preliminary
analysis of phenolic and carbohydrate components. J. Am. Soc. Brew.
Chem. 38, 154-158.

De Whalley, C.V., Rankin, S.M., Hoult, J.R.S., Jessup, W., and Leake, D.S. (1990) Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages. Biochem. Pharmacol. 39, 1743-1750

Dubois, M., iles, K. A., Hamiton, J. K., Rebers, P. A. and Smith, F. (1956)
Total carbohydrate by the phenol-sulfuric acid procedure. Anal. Chem.
28(3), 350.

Duh, P. D. and Yen, G. C. (1997) Antioxidative activity of three herbal
water extracts. Food Chem. 60, 639–645.

Frankel, E.N., Kanner, J., German, J.B., Parks, E., and Kinsella, J. E.
(1993) Inhibition of oxidation of human low-density lipoprotein by
phenolic substances in red wine. Lancet 341, 454-457

Graf, E. (1992) Antioxidant potential of ferulic acid. Free Rad. Biol. Med.
13, 435-448.

Garcia, A. A., Grande B. C. and Gandara, J. S. (2004) Development of a
rapid method based on solid-phase extraction and liquid chromatography
with ultraviolet absorbance detection for the determination of polyphenols in alcohol-free beers. Journal of Chromatography A 1054, 175-180.

Gardner, R. J. and McGuinness, J. D. (1977) Complex phenols in
brewing—A critical survey. Technical Quarterly, Master Brewers
Association of America 14, 250–261.

Hagerman, A. E. and Butler, L. G. (1980b) Condensed tannin purification
and characterization of tannin-associated proteins. J. Agric. Food Chem. 28, 947-952.

Hagerman, A. E. and Butler, L. G. (1981) The specificity of proanthocyanidin-protein interactions. J. Biol. Chem. 256, 4494-4497.

Haslam, E. (1985) Polyphenol interactions. Part 1. Introduction:
Some observations on the reversible complexation of polyphenols
with proteins and polysaccharides. J. Chem. Soc. Perkin Trans.
11, 1429–1438.

Hiroshi, K. and Mitsuaki, T. (1999) 1,1-Diphenyl-2- Pricryhydrazyl
Radical(DPPH) Scavenging ability of sake during storage. Journal of
Bioscience and Bioengineering 87(3), 328-332.

Hollman, P. C. H., Vries, J. H. M., de Leeuwen, S. D., van Mengelers, M. J. B. and Katan, M. B. (1995) Absorption of dietary quercetin glycosides and quercetin in healthy ileostomy volunteers. Am. J. Clin. Nutr. 62, 1276-1286

Hough, J. S. (1989) The biotechnology of malting and brewing. Cambridge
University Press.

Klim, M. and Nagy, S. (1988) An improved method to determine
nonenzymic browning in citrus juices. J.Aagric. Food Chem. 36, 1271-1274.
Kikuzaki, H. and Nakatani, N. (1993) Antioxidant effects of some
ginger constituents. J. Food Sci. 58, 1407–1410.

Lindsay, R. C. (1996) Food additives. In: Fennema, O.R. (Ed.), Food
Chemistry. p778–780.Marcel Dekker Inc., New York.

Lu, H. T. (2004) Yellow rice wine becoming preferred poison. China
Businessn Weekly. http://www.chinadaily.com.cn/english/doc/2004-
12/02/content_396581.htm.

Montanari, L., Perretti, G., Natella, F., Guidi, A. and Fantozzis, P. (1999)
Organic and phenolic acids in beer. Lebensm.-Wiss. Technol. 32, 535-539

Oyaizu, M. (1986) Studies on product of browning reaction prepared
from glucose amine. Jpn. J. Nutr. 44, 307–315.

Oh, H. I., Hoff, J. E., Armstrong, G. S. and Haff, L. A. (1980) Hydrophobic
interaction in tannin-protein Complexes. J. Agric. Food Chem. 28, 394-398.

Pierpoint, W. S. (1986) Flavonoids in the human diet. In Plant Flavonoids
In Biology and Medicine: Biochemical, Pharmacological and
Structure-Activity Relationships, p. 125-140, Alan R. Liss, New York, NY
USA

Que, F., Mao, L. and Pan, X. (2006) Antioxidant activities of five Chinese rice wines and the involvement of phenolic compounds. Food Res. Int. 39, 581–587.

Ratty, A. K. and Das, N. P. (1988) Effects of flavonoids on nonenzymic
lipid peroxidation: Structure activity relationship. Biochem. Med. Metabol. BioL 39, 69-79

Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. (1992)
Antioxidative properties of xanthane on cyclodextrin emulsion. J. Agric.
Food Chem. 40, 945-948.

Shop, L. T. (1975) Haze and foam-forming substances in beer. J. Inst. Brew. 81, 444-449.

Siebert, K. J., Carrasco, A. and Lynn, P. Y. (1996) Formation of protein-polyphenol haze in beverages. J. Agric. Food Chem. 44, 1997-2005.

Siebert, K. J., Troukhanova, N. V. and Lynn, P. Y. (1996) Nature of
polyphenol–protein interactions. J. agric. food chem. 44, 80–85.

Siebert, K. J., Stenroos, L. E. and Reid, D. S. (1981) Characterization of
amorphous-particle haze. J. Am. Soc. Brew. Chem. 39, 1-11.

Siebert, K. J. and Lynn, P.Y. (1998) Comparison of polyphenol interactions
with polyvinylpolypyrrolidone and haze-active protein. J. Am. Soc. Brew.
Chem. 56, 24-31.

Siebert, K. J. (1999) Effects of protein-polyphenol interactions on beverage
haze, stabilization, and analysis. J. Agric. Food Chem. 47: 353-362.

Siebert, K. J. and Lynn, P.Y. (2006) Comparison of method for measuring
polyphenols on beer. J. Am. Soc. Brew. Chem. 64: 127-134.

Sosulski, F., Krygier, K. and Hogge, L. (1982) Free, esterified, and
insoluble-bound phenolic acids. 3. Composition of phenolic acids in
cereal and potato flours. J. Agric. Food Chem. 30, 337-340

Singleton, V. L. and Rossi, J. A. J. r. (1965) Colorimetry of total phenolics
with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture 16, 144-153.

Tian, S., Nakamura, K., Cui, T. and Kayahara, H. (2005) High-performance
liquid chromatographic determination of phenolic compounds in rice.
Journal of Chromatography 1063, 121–128.

Woisky, R. and Salatino, A. (1998) Analysis of propolis:some parameters
and procedures for chemical quality control. J. Apic. Res. 37, 99-105.

Williamson, M. P. (1994) The structure and function of proline-rich regions
in proteins. J. Biochem. 297, 249-260.

Wu, L. C. and Lu, Y. W. (2004) Electrophoretic method for the identification of a haze-active protein in grape seeds. J. Agric. Food Chem. 52: 3130–3135.

Wu, L. C. and Siebert, K. J. (2002) Characterization of haze-active proteins in apple juice. J. Agric. Food Chem. 50, 3828–3834.

Xu, G. R. and Bao, T. F. (2005) Grandiose Survey of Chinese Alcoholic
Drinks and Beverages. School of Biotechnology, Southern Yangtze
University, Wuxi, Jiangsu Province, China. http://www.
sytu.edu.cn/zhgjiu/umain.htm.

Yang J. I. and Siebert, K. J. (2001) Development of a Method for Assessing
Haze- Active Protein in Beer by Dye Binding. J. Am. Soc. Bre. Chem. 59.
(4), 172-182.

Yang, J. I. and Su, C. Y. (2004) Study on the colloidal stability of Taiwanese
millet wine during cold storage: Characterization of haze-active protein
and their haze-forming capacities. In: IFT Annual Meeting Book
of Abstracts. Institute of Food Technologists. Pp. 227, Abstract nr
83F-6.

Yang, J. I., Lee, Y. C. and Siebert, K.J. (2006) Study of Colloidal Instability
of Millet Wine. J. Am. Soc. Brew. Chem. 64(2), 86-93.

Yen, G. C. and Duh, P. D. (1995) Scavenging effect of methanolic extracts
of peanut hulls on free-radical and active oxygen species. J. Aagric. Food
Chem. 42, 629–632.

Yuan, Y.V., Bone, D.E. and Carrington, M.F. (2005) Antioxidant activity
of dulse (Palmaria palmata) extract evaluated in vitro. Food Chemistry
91, 485–494.

Zhou, Z., Robards, K., Helliwell, S. and Blanchard, C. (2004) The
distribution of phenolic acids in rice. Food Chemistry 47, 401–406.

Zhu, B.Y. and Hsu, C.H. (1994) Yellow wine. In: Brewing Technology
(Mandarin). China Light Industry Press. Beijing, China. Pp. 365-423

Zoecklein, B.W., Fugelsang, K.C., Gump, B.H. and Nury, F.S. (1990)
Production Wine Analysis. New York:Van Nostrand Reinhold.
.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 黃及時 (1994)。糖化後發酵條件之探討,製酒科技專論彙編,16:209-232
2. 黃正財 (1980)。酒類之熟成與調熟,製酒科技專論彙編,2:7-13。
3. 盧倩儀,區域整合理論之比較與評析《美歐季刊》,第12卷,第1期,春季號,(1997)。
4. 鄒忠科,歐洲經濟區域之形成及其發展《問題與研究》,3 2 卷2 期(1993.02)。
5. 黃偉峰,歐盟整合模式與兩岸主權爭議之解,分析歐美研究,第三十一卷第一期 (2000.3)。
6. 胡鳳綬 (1994)。酒中之酚類成分,製酒科技專論彙編,16:299-304。
7. 胡鳳綬 (1988)。酒類中之香氣成分,製酒科技專論彙編,10:139-174。
8. 歐陽港生 (1991)。中國傳統蒸餾酒的色香味及品評,製酒科技專論彙編。13:67-78。
9. 林讚峰 (1996)。啤酒品質的安定化(二)化學性混濁之預防,製酒科技專論彙編,18:38-52。
10. 林讚峰 (1994)。酵母菌對酒類香氣生成之貢獻,製酒科技專論彙編,16:1-24。
11. 薛添福 (1992)。從釀酒過程中談米類釀造酒的熟成,製酒科技專論彙編,
12. 劉益善 (1993)。中國傳統酒精飲料製造技術之特性,製酒科技專論彙編,15:71-79。
13. 劉桂郁 (1997)。中國米類酒之釀造,食品工業,29(9):26-32。
14. 游豐吉,「大陸石油工業現況即面臨的挑戰」,中共研究,35卷7期,(2001.7)。
15. 曾怡仁、張惠玲,區域整合理論的發展《問題與研究》,第39 卷,第8 期(2000.8)。