跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2024/12/13 22:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王唯任
研究生(外文):Wang, wei-jen
論文名稱:正交旋轉管內設交錯45度表面肋梯形截面急彎雙通道熱傳研究
論文名稱(外文):Heat Transfer in Rotating Twin-Pass Trapezoidal-Sectioned Passage with Two Opposite Walls Roughened by 45 Degree Ribs
指導教授:張始偉張始偉引用關係
指導教授(外文):Chang, Shyy-Woei
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:117
中文關鍵詞:梯形雙通道旋轉肋管渦輪動葉冷卻
外文關鍵詞:Rotating Trapezoidal Twin-Pass DuctTurbine Rotor Blade Cooling
相關次數:
  • 被引用被引用:0
  • 點閱點閱:318
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
本實驗研究探討正交旋轉管內設45度交錯配置表面肋梯形斷面急彎雙通道於兩通道方位角0度與 45度之熱傳現象,實驗量測6組Ro數(0、 0.1、 0.3、 0.5、0.7 、1),5組Re數(5000、 7500、 10000、 12500 、 15000),於任一Ro-Re組合,量測5組不同加熱程度,沿著兩肋面中心線的Local Nu數分佈。實驗結果說明對流慣性力、科式力與旋轉浮力對沿兩肋面中心線各點與平均熱傳值所造成的單獨與偶合影響。實驗結果顯示,科式力提昇雙通道旋轉管兩不穩定側的熱傳值。旋轉浮力效應降低熱傳;當Ro數增加時,旋轉浮力降低熱傳的影響程度漸趨緩和。在Ro數為0.7與1時,旋轉浮力降低第一通道尾端之Local熱傳。當Ro數由0.1增加至1時,兩通道方位角的熱傳差異性大約在5%至26%之範圍。此研究之主要目的為產生熱傳實驗公式,藉以評估正交旋轉管內設交錯45度表面肋急彎雙通道沿兩肋面中心線之各點與平均值之熱傳值,此熱傳實驗公式允許評估對流慣性力、科式力與旋轉浮力效應對熱傳產生之單獨與偶合之影響。
An experimental study of heat transfer in a radially rotating twin-pass trapezoidal-sectioned duct with two opposite walls roughened by 450 staggered ribs was performed. Two channel orientations of 0 degree and 45 degree from the direction of rotation were tested. At each Reynolds number of 5000, 7500, 10000, 12500 and 15000, local Nusselt numbers along the centerlines of two rib-roughened surfaces with five different heating levels were acquired at rotating numbers of 0, 0.1, 0.3, 0.5, 0.7 and 1. A selection of experimental results illustrates the isolated and interactive influences of convective inertial, Coriolis and rotating buoyancy forces on local and centerline-averaged heat transfers. The isolated Coriolis force-effect improves heat transfer over two unstable surfaces of the rotating twin-pass channel. Rotating buoyancy effect undermines local heat transfer but its influence is alleviated when the rotating number increases. At rotating number of 0.7 and 1, the rotating buoyancy force acting with counter-flow manner considerably impairs local heat transfers in the end-region of the first passage with radially outward flow. With the rotating numbers in the range of 0.1 to1, the heat transfer differences between the two channels with orientations of 0 degree and 45 degree are in the range of 5-26%. As a strategic aim of the present study, heat transfer correlations are derived to evaluate the centerline-averaged Nusselt numbers over two rib-roughened surfaces that permit the individual and interactive influences of convective inertia, Coriolis force and rotating buoyancy to be quantified. As the full-field spatial heat transfer variations in the present rotating channel are not measured, the local heat transfer results generated by the present study are limited to the locations measured.
目錄

謝誌………………………………………………………………………I
中文摘要…………………………………………………………………II
英文摘要…………………………………………………………………III
表目錄……………………………………………………………………V
圖目錄……………………………………………………………………VI
符號說明…………………………………………………………………XI

第一章 前言………………………………………………………………1
1-1燃氣渦輪機………………………………………………………1
1-2燃氣渦輪機的發展趨勢…………………………………………4
1-3渦輪機動葉冷卻…………………………………………………6
1-4研究目標………………………………………………………10

第二章 文獻回顧與研究規劃…………………………………………12
2-1表面粗化靜態管流研究………………………………………13
2-2正交旋轉平滑管熱流研究……………………………………21
2-3正交旋轉肋管熱流研究………………………………………27

第三章 實驗設備與方法………………………………………………47
3-1參數分析………………………………………………………49
3-2旋轉機組………………………………………………………53
3-2熱傳實驗模組…………………………………………………56
3-4實驗數據處理與實驗參數範圍………………………………59
3-5實驗步驟………………………………………………………65
3-5-1熱損失實驗步驟………………………………………65
3-5-2靜態熱傳實驗步驟……………………………………66
3-5-3旋轉熱傳實驗步驟……………………………………67
3-6實驗誤差分析…………………………………………………68

第四章 結果與討論……………………………………………………69
4-1靜態管熱傳結果………………………………………………72
4-2旋轉管熱傳結果………………………………………………75
4-3旋轉浮力效應與科式力對熱傳的影響……………………80
4-4 熱傳實驗式…………………………………………………86

第五章 結論……………………………………………………………93

參考文獻…………………………………………………………………95
[1]Rolls-Royce website http://www.rolls-royce.com/media /product/ default.jsp
[2]Two-Stroke Archive 2002, Installation Aspects of MAN B&W Main and Auxiliary Engines, MAN B&W webside.
[3]B. Lakshminarayana, 1996, Fluid Dynamics and Heat Transfer of Turbomachinery, pp.171-616, ISBN 0-471-85546-4, John Wiley & Sons, Inc.
[4]J.M. Owen and R.H. Rogers, 1995, Flow and Heat Transfer in Rotating-Disc Systems, pp.2, ISBN 0-86380-179X, John Wiley & Sons, Inc.
[5]J.A.J. Khamaj, Ph.D.2002, University of Wales, Swansea, An Experimental Study of Heat Transfer in the Cooling Channels of Gas Turbine Rotor Blades”.
[6]S.W. Chang and W.D. Morris, 2003, Heat Transfer in a Radially Rotating Square Duct Fitted with In-Line Transverse Ribs, Int. J. of Thermal Sciences, 42, pp.271.
[7]S.S. Hsieh and Y.J. Hong, 1989, Separating Flow Over Repeated Surface-Mounted Ribs in a Square Duct, AIAA Journal, Vol.27, No.6, pp.770-776.
[8]G.. Rau, M. Cakan, D. Moeller and T. Arts, 1998, The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel, ASME Journal of Turbomachinery, Vol.120, pp.368-375.
[9]H. Sato, K. Hishida and M. Maeda, 1992, Characteristics of Turbulent Flow and Heat Transfer in A Rectangular Channel with Repeated Rib Roughness, Experimental Heat Transfer, Vol.5, pp.1-16.
[10]M. Hirota, H. Fujita and H. Yokosawa, 1994, Experimental Study on Convective Heat Transfer for Turbulent Flow in a Square Duct with a Ribbed Rough Wall (Characteristics of Mean Temperature Field), ASME Journal of Heat Transfer, Vol.116, pp.332-340.
[11]H. Iacovides, G. Kwlemenis and M. Raisee, 2003, Flow and Heat Transfer in Straight Cooling Passages with Inclined Ribs on Opposite Walls:An Experimental and Computational Study, Experimental Thermal and Fluid Science, Vol. 27, pp.283-294.
[12]J.C. Han, 1988, Heat Transfer and Friction Characteristics in Rectangular Channels with Rib Turbulators, ASME Journal of Heat Transfer, Vol.110, pp.321-328.
[13]J.C. Han and J.S. Park, 1988, Developing Heat Transfer in Rectangular Channels with Rib Turbulators, Int. J. Heat Mass Transfer, Vol.31 , No.1, pp.183-195.
[14]M.E. Taslim, T. Li and D.M. Kercher, 1996, Experimental Heat Transfer and Friction in Channels Roughened with Angled, V-Shaped, and Discrete Ribs on Two Opposite Walls, ASME Journal of Turbomachinery, Vol.118, 20-28.
[15]J.C. Han, Y.M. Zhang and C.P. Lee, 1991, Augmented Heat Transfer in Square Channels with Parallel, Crossed, and V-Shaped Angled Ribs, ASME Journal of Heat Transfer, Vol.113, pp.590-596.
[16]T. Barua, 1954, Secondary Flow in a Rotating Straight Pipe, Proc. Roy. Soc A, 227, pp.133.
[17]S. Dutta, M.J. Anderws and J.C. Han, 1996, Prediction of Turbulent Heat Transfer in Rotating Smooth Square Ducts, Int. J. Heat Mass Transfer, Vol.39, No.12, pp.2505-2514.
[18]W.D. Morris and S.W. Chang, 1997, An Experimental Study of Heat Transfer in a Simulated Turbine Blade Cooling Passage, Int. J. Heat Mass Transfer, Vol.40, No.15, pp.3703-3716.
[19]C.R. Kuo and G.J. Hwang, 1996, Experimental Studies and Correlations of Radially Outerward and Inward Air-Flow Heat Transfer in a Rotating Square Duct, ASME Journal of Heat Transfer, Vol.118, pp.23-30.
[20]H.C. Chen, Y.J. Jang and J.C. Han, 2000, Computation of Heat Transfer in Rotating Two-Pass Square Channels by a Second-Moment Closure Model, Int. J. of Heat and Mass Transfer, 43, pp.1603-1616.
[21]A. Murata and S. Mochizuki, 2004, Centrifugal Buoyancy Effect on Turbulent Heat Transfer in a Rotating Two-Pass Smooth Square Channel with Sharp 180-Deg Turns, Int. J. of Heat and Mass Transfer, 47, pp.3215-3231.
[22]T.M. Liou, C.C. Chen and M.Y. Chen, 2001, TLCT and LDV Measurements of Heat Transfer and Fluid Flow in a Rotating Sharp Turning Duct, Int. J. of Heat and Mass Transfer, Vol.44, pp.1777-1787.
[23]J.H. Wagner, B.V. Johnson and T.J. Hajek, 1991, Heat Transfer in Rotating Passages with Smooth Walls and Radial Outward Flow, ASME Journal of Turbomachinery, Vol.113, pp.42-51.
[24]J.H. Wagner, B.V. Johnson and F.C. Kopper, 1991, Heat Transfer in Rotating Serpentine Passages with Smooth Walls, ASME Journal of Turbomachinery, Vol.113, pp.321-329.
[25]J.C. Han and Y.M. Zhang, 1992, Effect of Uneven Wall Temperature on Local Heat Transfer in a Rotating Square Channel with Smooth Walls and Radial Outward Flow, ASME Journal of Heat Transfer, Vol.114, pp.850-858.
[26]J.C. Han, Y.M. Zhang and K. Kalkuehler, 1993, Uneven Wall Temperature Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with Smooth Walls, ASME Journal of Heat Transfer, Vol.115, pp.912-920.
[27]P.H. Rothe and J.P. Johnston, 1979, Free Shear Layer Behavior in Rotating System, ASME Journal of Fluids Engineering, Vol.101, pp.117-120.
[28]A.Q. Mohammad, H.C. Chen and J.C. Han, 2003, A Numerical Study of Flow and Heat Transfer in Rotating Rectangular Channels (AR=4) with 45 Deg Rib Turbulators by Reynolds Stress Turbulence Model, ASME Journal of Heat Transfer, Vol.125, pp.19-26.
[29]S. Dutta, J.C. Han, and C.P. Lee, 1995, Experimental heat transfer in a rotating triangular duct: effect of model orientation, ASME Journal Heat Transfer, Vol. 117, pp. 1058-1065.
[30]A. Murata and S. Mochizuki, 2001, Effect of Centrifugal Buoyancy on Turbulent Heat Transfer in An Orthogonally Rotating Square Duct with Transverse or Angled Rib Turbulators, Int. J. of Heat and Mass Transfer, 44, pp.2739-2750.
[31]A. Murata, and S. Mochizuki, 2003, Effect of Cross-Sectioned Aspect Ratio on Turbulent Heat Transfer in An Orthogonally Rotating Rectangular Duct with Angled Rib Turbulators, Int. J. Heat Mass Transfer, 46, pp. 3119-3133.
[32]J.R. Shen, Z. Wang, P.T. Ireland, T.V. Jones, and A.R. Byerley, 1996, Heat Transfer Enhancement within a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs with Film Cooling Holes, ASME J. Turbomachinery, Vol. 118, pp. 428-434.
[33]S.W. Chang and W.D. Morris, 1998, A Comparative Study of Heat Transfer between Rotating Circular Smooth-Walled and Square Rib-Roughened Ducts with Cooling Application for Gas Turbine Rotor Blades, JSME International Journal Series B, Vol.41, No.2, pp.302-315.
[34]H.Iacovides, D.C. Jackson, H. Ji, G. Kelemenis, B.E. Launder and K. Nikas, 1998, LDA Study of the Flow Development Through an Orthogonally Rotating U-Bead of Strong Curvature and Rid-Roughened Walls, ASME Journal of Turbommachinery, Vol.120, pp.386-391.
[35]T.M. Liou, M.U. Chen and M.H. Tsai, 2002, Fluid Flower and Heat Transfer in a Rotating Two-Pass Square Duct with In-Line 90-Deg Ribs, ASME Journal of Turbomachinery ,Vol.124, pp.260-268.
[36]M.Al-Qahtani, Y.J. Jang, H.C. Chen and J.C. Han, 2002, Prediction of Flow and Heat Transfer in Rotating Two-Pass Rectangular Channels with 45-Deg Rib Turbulators, ASME Journal of Turbomachinery, Vol.124, pp.242-250.
[37]J.A. Parson , J.C. Han and Y. Zhang, 1994, Wall Heating Effect on Local Heat Transfer in a Rotating Two-Pass Square Channel with90-Deg Rib Turbulators, Int. J. of Heat and Mass Transfer, Vol.37 , No.9, pp.1411-1420.
[38]J.A. Parsons, J.C. Han and Y. Zhang, 1995, Effect of Model Orientation and Wall Heating Condition on Local Heat Transfer in a Rotating Two-Pass Square Channel with Rib Turbulators, Int. J. of Heat and Mass Transfer, Vol.38, No.7, pp.1151-1159.
[39]W.L. Fu, L.M. Wright and J.C. Han, 2005, Buoyancy Effects on Heat Transfer in Five Different Aspect-Ratio Rectangular Channels with Smooth Walls and 45-Degree Ribbed Walls, ASME Turbo Expo. 2005:Power for Land, Sea and Air June 6-9, Reno-Tahoe, Nevada, USA , GT2005-68493.
[40]J.H. Wagner , B.V. Johnson , R.A. Graziani and F.C Yeh, 1992, Heat Transfer in Rotating Serpentine Passages with Trips Normal to the Flow, ASME Journal of Turbomachinery, Vol.114, pp.847-857.
[41]B.V. Johnson, J.H. Wagner, G.D. Steuber and F.C. Yeh, 1994, Heat Transfer in Rotating Serpentine Passages with Selected Model Orientations for Smooth or Skewed Trip Walls, ASME Journal of Turbomachinery, Vol.116, pp.738-744
[42]B.V. Johnson, J.H. Wagner, G.D. Steuber and F.C. Yeh, 1994, Heat Transfer in Rotating Serpentine Passages with Trips Skewed To the Flow, ASME Journal of Turbomachinery, Vol.116, pp.113-123.
[43]W.D. Morris, 1981, Heat Transfer and Fluid Flow in Rotating Coolant Channels, John Wiley&Sons Ltd, ISBN 0471101214.
[44]F.W. Dittus, and L.M.K. Boelter, 1930, Journal of Engineering, Univ. California Publs., Vol.2, pp.443-461
[45]Editorial Board of ASME Journal of Heat Transfer, 1993, Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results, ASME Journal Heat Transfer, Vol.115, pp.5-6.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文