跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/03/20 07:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許永聖
研究生(外文):Yung-Sheng,Hsu
論文名稱:利用多個調諧質量阻尼器來進行結構減振之研究
論文名稱(外文):A study on vibration reduction of structures using multiple tuned mass dampers
指導教授:吳佳璋
指導教授(外文):Jia-Jang,Wu
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:輪機工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:61
外文關鍵詞:vibration absorbermultiple tuned mass dampers (MTMD)vibration reduction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:679
  • 評分評分:
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
The object of this thesis is to investigate the vibration reduction effectiveness of MTMD (Multiple Tuned Mass Dampers). First of all, the governing equations for the entire vibrating system (i.e., the single degree-of-freedom spring-mass-damper main system installed with a MTMD) and the expression for calculating the dynamic magnification factor of the spring-mass-damper main system are derived. Then, based on the last expression of dynamic magnification factor, the influence of MTMD parameters (e.g. mass ratio, frequency ratio, frequency spacing, etc.) on its vibration reduction effectiveness is studied. Next, by replacing the single degree-of-freedom spring-mass-damper main system with a multiple degree-of-freedom beam-typed (or plate-typed) structures, the influence of MTMD parameters on its vibration reduction effectiveness is further investigated. From the presented numerical results, it can be found that the MTMD parameters affect its vibration reduction effectiveness significantly.
Contents
Abstract…………………………………………………………………..I
Acknowledgement………………………………………………………II
Contents……………………………………………………………...…III
List of Figures……………………………………………………..…...VI
Nomenclature……………………………………………………….......X
Chapter 1 Introduction…………………………………………............1
1.1 Literature review……………………………………………..1
1.2 Research method……………………………………………...3
1.3 Thesis structure……………………………………………….3
Chapter 2 Equations of motion of the entire vibrating system and dynamic magnification factor of the spring-damper-mass main system………………………………………………..6
2.1 Derivation of governing equations for the entire vibrating
system………………………………………………………...6
2.2 Dynamic magnification factor of the spring-damper-mass
main system…………………………………………………10
Chapter 3 Vibration reduction effectiveness of MTMD…………….17
3.1 Comparison of TTMD and STMD………………………….17
3.2 Influence of natural frequency ratio and frequency range..…20
3.3 Influence of exciting frequency ratio…...…………………...22
3.4 Influence of damping ratio………………………………….23
3.5 Influence of total number of MTMD……………………..…25
3.6 Influence of mass ratio…………………………….………..27
3.7 Conclusions…………………………………………………28


Chapter 4 Free and forced vibration analyses of a structure installed
with a MTMD using finite element method……...............29
4.1 Element property matrices of MTMD………………………29
4.2 Free vibration analysis of the structure……………...………30
4.3 Forced vibration analysis of the structure installed with a
MTMD and subjected to an external harmonic load………..31
Chapter 5 Vibration reduction of a beam and a plate subjected to an
external dynamic load using a MTMD………………...…33
5.1 Vibration suppression of a beam subjected to a dynamic load using a MTMD………………………...……………………34
5.1.1 Natural frequencies and the corresponding mode shapes
of the pinned-pinned beam……………………….…36
5.1.2 Influence of position of MTMD……………………..38
5.1.3 Influence of frequency range………………………...39
5.1.4 Influence of damping ratio…………………………..41
5.1.5 Influence of total number of MTMD………………...43
5.1.6 Influence of mass ratio………………………………46
5.2 Vibration suppression of a plate subjected to a dynamic load using a MTMD……………………………..……………….48
5.2.1 Natural frequencies and the corresponding mode shapes
of the CCFF plate………………...…………………49
5.2.2 Influence of position of MTMD…………………..…50
5.2.3 Influence of frequency range…………………..…….52
5.2.4 Influence of damping ratio…………………………..53
5.2.5 Influence of total number of MTMD………….……..54
5.2.6 Influence of mass ratio………………………………56
5.3 Conclusions…………………………………………………57

Chapter 6 Conclusions and Recommendations………….…………..58
6.1 Conclusions…………………………………………………58
6.2 Recommendations for Future Work…………………………58
References………………..………………………………..……………60
References

[1]J. P. Hartog, 1956, Mechanical Vibrations, McGraw-Hill; fourth edition.
[2]G.B. Warburton, E.O. Ayorinde, 1980, Optimum absorber parameters for simple system, Earthquake Engineering and Structural Dynamics, Vol. 8, pp. 197-217.
[3]G. B. Warburton, 1981, Optimum absorber parameters for minimizing vibration response, Earthquake Engineering and Structural Dynamics, Vol. 9, pp. 251-262.
[4]G.B. Warburton, 1982, Optimum absorber parameters for various combinations of response and excitation parameters, Earthquake Engineering and Structural Dynamics, Vol. 10, pp. 381-401.
[5]R. Rana and T. T. Soong, 1998, Parametric study and simplified design of tuned mass dampers, Engineering structures, Vol. 20, pp. 193-204.
[6]M. Z. Ren, 2001, A variant design of the dynamic vibration absorber, Journal of Sound and Vibration, Vol. 245, pp. 762-770.
[7]P. Wang, R. F. Fung and S. C. Huang, 2001, Dynamic analysis of a tall building with a tuned-mass-damper device subjected to earthquake excitations, Journal of Sound and Vibration, Vol. 244, pp. 123-136.
[8]H. C. Kwon, M. C. Kim and I. W. Lee, 1998, Vibration control of bridges under moving loads, Computers & Structures, Vol. 66, pp. 473-480.
[9]H. J. Rice, 1993, Design of multiple vibration absorber systems using modal data, Journal of Sound and Vibration, Vol. 160, pp. 378-385.
[10]S. Joshi and R. S. Jangid, 1997, Optimum parameters of multiple tuned mass dampers for base-excited damped systems, Journal of Sound and Vibration, Vol. 202, pp.657-667.
[11]H. Yamaguchi and N. Harnpornchai, 1993, Fundamental characteristics of multiple tuned mass dampers for suppressing harmonically forced oscillations, Earthquake Engineering and Structural Dynamics, Vol. 22, pp. 51-62.
[12]K. Xu and T. Igusa, 1992, Dynamic characteristics of multiple substructures with closely spaced frequencies, Earthquake Engineering and Structural Dynamics, Vol. 21, pp. 1059-1070.
[13]http://www.fsi.lsu.edu/~frandsen
[14]http://www.sonus.nl/dutch/vakgebieden/trillingen/zouthb.html
[15]R. W. Clough and J. Penzien, 1975, Dynamics of Structures, McGraw-Hill, Inc.
[16]K. J. Bathe, 1982, Finite Element Procedures in Engineering Analysis, Prentice-Hall, Englewood Cliffs, New Jersey.
[17]G. H. Golub, R. Underwood and J. H. Wilkinson, 1972, The Lanczos algorithm for the symmetric Ax = Lambda * Bx Problem, Stanford University, Computer Science Department.
[18]ANSYS User's Guide.
[19]ANSYS Reference Manual.
[20]ANSYS 9.0 Online Help.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top