跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林長毅
研究生(外文):Chang-Yi Lin
論文名稱:以近場相位偏移微影術製作次波長奈米線寬之表面聲波元件
論文名稱(外文):To fabricate surface acoustic wave transducers with sub-wavelength features by using near-field phase-shifting contact lithography
指導教授:賴富德
指導教授(外文):Fu-Der Lai
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:109
中文關鍵詞:聚二甲基矽氧烷深次波長線寬相位光罩解析度增強技術近場相位偏移微影術表面聲波元件
外文關鍵詞:SAW divicePolydimethlsiloxaneDeep Sub-wavelength featureNear-field phase shift lithographyResolution-enhancing techniquePhase-shifting mask
相關次數:
  • 被引用被引用:0
  • 點閱點閱:127
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘 要
本篇論文主要描述了兩大部分。第一部分為研讀近幾年光學微影在半導體工
業技術中有關解析度增強技術的發展;另一部分為運用近場相位偏移微影技的方
法製作出窄線寬電極的表面聲波元件。
此為第一部分。現今半導體工業技術中,光學微影已有相當卓越的歷史以及
成就。然今時今日,光學微影在半導體工業技術藍圖中遭遇了相當大的挑戰與考
驗,光學微影至始儼然已面臨重要的轉變期,並且更要試著延伸至新的光學科技
與工程的領域之中。本論文將回顧近幾年有關於解析度增強技術的發展情況,一
般解析度增強技術可分為:光學鄰近效應、離軸照光以及相位光罩。為了能夠延
伸光學微影中的繞射極限,讓更新穎的解析度增強技術可以被發展出來。我們透
過西元1997 年J. A. Rogers 等人所提出的概念,引進新穎,透明與彈性的模仁,這
樣的模仁主要是使用聚二甲基矽氧烷-PDMS (poly(dimethlsiloxane))所翻印出來
的,它可用來製作在近場光學微影之中作為相位光罩並製作出小於100 奈米的線
寬。實驗中,我們使用曝光光源為KrF 準分子雷射,波長約248 奈米,並且運用
不同的曝光劑量,約1~3 mj/cm2 的能量,製作出深次波長的線寬,如100 奈米,
70 奈米甚至是60 奈米。此方法可使光學微影的解析度推進至波長的四分之一。
此為第二部分。當光學微影經全透明且具彈性的相位光罩達到深次波長的特
徵尺度時,我們就此以近場相位偏移微影技術的應用製作出表面聲波元件。由於
本論文研究中,透過近場相位偏移微影術方法可製作出四分之一波長的解析度線
寬,因此經由結合近場相位偏移微影術以及窄線寬電極的表面聲波元件之設計,
如此我們可開創出一個簡易與低成本的表面聲波元件,並且操作在數個GHz 以上
ABSTRCT
This paper describes two major topics. One is the studies and researches of the
most recent developments about resolution-enhancing techniques in the optical
lithography of the semiconductor industry. The other is that can be employed the
method of near-field phase shift lithography to generate SAW devices with narrow
electrode gap.
The following is the first major topic. Optical lithography, in the semiconductor
industry, has had a remarkable history and, most probably, it will have an equally
successful future for another decade. To date, it has met all the major challenges posed
by the semiconductor industry roadmap. In order to do so, it has undergone important
transformations, and has greatly expanded the frontiers of the science and engineering
of optics. This paper will review the most recent developments about
resolution-enhancing techniques such as optical proximity correction, off-axis
illumination and phase-shifting masks. In order to be able to continue the use of
diffraction-limited optical lithography, new schemes have been developed that enhance
the resolution. Therefore we introduce new, transparent, elastomeric molds of
poly(dimethlsiloxane) (PDMS) that can be employed as photomasks reported generating
sub-100 nm parallel lines by means of near-field photolithography J. A. Rogers et al.,
Appl. Phys. Lett. 70, 2658 (1997). We employ a difference in the effective exposure
dose to generate deep Sub-wavelength features such as 100nm, 70nm and even 60nm,
between 1~3mj/cm2 with an exposing wavelength of 248nm generated by KrF excimer
laser. The resolution is able to approach of ~λ/4.
The following is the second major topic. When optical lithography is able to
III
generate deep Sub-wavelength features with an elastomeric phase mask in near-field,
we report on the application of the near-field phase shift technique for fabrication
electronic as well as acoustic devices. Because this method can generate that resolution
is able to approach of ~λ/4, the technique is best suited for the fabrication of narrow
electrode gap SAW devices. The combination of near-field phase shift lithography with
narrow-gap SAW designs thus opens up a way for simple and low-cost SAW devices
operating above a few GHz.
目 錄
摘 要...........................................................................................................................I
ABSTRCT ...................................................................................................................... II
誌 謝........................................................................................................................IV
目 錄.........................................................................................................................V
圖 目 錄..................................................................................................................... VIII
第 一 章 緒 論........................................................................................................1
1-1. 前 言.............................................................................................................. 1
1-2. 研究動機及目的.............................................................................................. 5
1-3. 本論文架構...................................................................................................... 7
第 二 章 文 獻 回 顧..................................................................................................8
2-1. 延伸光學微影術的重要參數與技術分析...................................................... 8
2-1-1. 波 長................................................................................................... 9
2-1-2. 數值孔徑..............................................................................................11
2-1-3. 解析度增益技術................................................................................. 14
2-2. 近場相位偏移微影術.................................................................................... 22
2-2-1. 近場相位偏移介紹............................................................................. 22
2-2-2. 近場相位偏移光罩原理分析............................................................. 26
2-3. 近場相位偏移光罩之光學需求.................................................................... 28
2-4. 表面聲波元件之簡介.................................................................................... 29
2-4-1. 表面聲波元件之介紹......................................................................... 29
2-4-2. 表面聲波原理..................................................................................... 30
2-4-3. 壓電效應............................................................................................. 31
VI
2-4-4. 壓電基材的選擇................................................................................. 34
2-4-5. 交指叉電極對數與長度..................................................................... 34
2-5. 表面聲波元件的參數.................................................................................... 35
2-5-1. 波速 (V0) ....................................................................................... 35
2-5-2. 插入耗損(Insertion Loss)................................................................ 35
2-5-3. 機電耦合係數(K2) ......................................................................... 36
2-5-4. 溫度頻率係數 (TCD).................................................................... 36
2-6. 表面聲波元件製作流程................................................................................ 37
2-7. PDMS 特性與抗沾黏處理............................................................................ 39
2-7-1. PDMS 之基本材料特性與應用........................................................... 39
2-7-2. 自組裝單分子層(Self-Assembled Monolayer, SAM ) .......................... 42
2-7-3. 抗沾黏處理......................................................................................... 43
第 三 章 實驗方法與元件製作..................................................................................45
3-1. 近場相位偏移微影術製程............................................................................ 45
3-2. 實驗架構與流程............................................................................................ 47
3-2-1. 模仁製作流程..................................................................................... 48
3-2-2. PDMS 軟模光罩製作........................................................................... 49
3-2-3. SAW transducers 元件製作流程........................................................... 50
3-3. PDMS 軟模光罩製作.................................................................................... 51
3-3-1. 模具抗沾黏處理之製作..................................................................... 51
3-3-2. 軟模光罩製作流程............................................................................. 54
3-4. KrF(248nm)準分子雷射微影製程與元件製作...................................... 57
3-4-1. KrF 準分子雷射系統........................................................................... 57
3-4-2. KrF 準分子雷射微影曝光製程與實驗步驟....................................... 59
VII
3-5. 實驗檢測設備................................................................................................ 63
3-5-1. 場發射電子顯微鏡(Field emission microscopes, FE-SEM):.......... 63
3-5-2. 原子力顯微鏡檢測(Atomic force microscope, AFM):................... 63
3-5-3. 高解析電子能譜儀(High resolution X-ray photoelectron spedtrometer,
XPS): ........................................................................................................... 63
第 四 章 結果與討論..................................................................................................64
4-1. 模仁表面抗沾黏處理之製程條件................................................................ 64
4-1-1. 模仁與PDMS 軟模光罩..................................................................... 64
4-1-2. 簡易之接觸角量測............................................................................. 69
4-1-3. XPS 對模仁表面成份分析.................................................................. 71
4-2. KrF 準分子雷射製作次波長奈米線寬之製程方式.................................... 73
4-2-1. 光阻膜厚與曝光量之量測................................................................. 73
4-2-2. 曝光劑量與製程技術......................................................................... 74
4-2-3. 於光阻上所呈現之光學近場效應..................................................... 78
4-2-4. 製作出四分之一波長奈米線寬......................................................... 81
4-3. 以KrF 準分子雷射製作表面聲波元件與信號量測.................................. 85
4-3-1. 製作元件之製程條件......................................................................... 85
4-3-2. 結論與信號量測................................................................................. 89
第 五 章 結 論..................................................................................................91
參 考 文 獻..................................................................................................................93
VIII
圖 目 錄
圖1-1 2004 年半導體產業之成長............................................................................... 1
圖1-2 ITRS 於2002 年時提出的半導體產業趨勢圖................................................ 2
圖1-3 逐年步進機(Stepper)所使用的光源波長..................................................... 3
圖2-1 光學微影曝光系統與延伸光學微影系統之途徑[9] ....................................... 8
圖2-2 透過光學投影鏡頭至晶圓上之情況...............................................................11
圖2-3 濕浸式增益技術.............................................................................................. 12
圖2-4 光於空間中傳播之形貌.................................................................................. 14
圖2-5 各項曝光系統適用於各種線幅尺寸的預估[14] ........................................... 15
圖2-6 (a)透過鄰近效應修正之圖案;(b)光罩圖案上之複合圖形;(c)運用截線與肘圖
修正鄰近效應.......................................................................................................... 17
圖2-7 (a)為傳統二位光罩;(b)為相位光罩................................................................. 19
圖2-8 相位偏移於0,π 2 ,π 反轉下之影像解析度.................................................... 19
圖2-9 偏軸照射之基本概念...................................................................................... 21
圖2-10(a)曝光光源通過PDMS 軟模光罩之形勢圖;(b)於相位光罩緣際處產生之零
位場量;(c)相位光罩於轉角處所產生的場量分佈................................................. 24
圖2-11 光場強度於近場與遠場之分佈情況............................................................ 27
圖2-12 表面聲波之意示圖........................................................................................ 30
圖2-13 晶體結構中之非對稱中心............................................................................ 31
圖2-14 正壓電效應及逆壓電效應............................................................................ 32
圖2-15 表面聲波元件之基本形態............................................................................ 33
圖2-16 表面聲波元件之特性參數............................................................................ 33
圖2-17 剝離製程與乾蝕刻製程之製作流程............................................................ 38
IX
圖2-18 PDMS 之結構式............................................................................................. 39
圖2-19 PDMS 於不同波長下之穿透率關係圖......................................................... 40
圖2-20 F13-TCS 在具有氫氧根的矽材表面上的反應過程....................................... 44
圖2-21 沈積F13-TCS 單分子層之實驗架構.............................................................. 44
圖3-1 具有表面聲波元件圖案之模仁...................................................................... 46
圖3-2 模仁製作流程圖.............................................................................................. 48
圖3-3 PDMS 軟模光罩製作流程圖........................................................................... 49
圖3-4 SAW transducers 元件製作流程圖................................................................... 50
圖3-5 模仁抗沾黏處理之實驗流程圖...................................................................... 53
圖3-6 PDMS 軟模光罩製作之實驗流程圖............................................................... 56
圖3-7 KrF 準分子雷射系統....................................................................................... 57
圖3-8 KrF 雷射系統之回饋系統............................................................................... 57
圖3-9 EPK-731 光阻轉速與厚度之關係圖(原廠公司提供) ............................... 58
圖3-10 KrF 雷射製程與表面聲波元件製作流程圖................................................. 62
圖4-1 因不良的翻模過程造成邊角處與高度不符合光學條件的情況................. 65
圖4-2 因圓鈍之PDMS 相位光罩所曝出的圖案...................................................... 66
圖4-3(a)模仁經抗沾黏處理後之表面AFM 量測; (b)PDMS 翻模經AFM 作表面量測
................................................................................................................................. 68
圖4-4 針對模仁之轉角處做AFM 量測.................................................................... 68
圖4-5(a)在未經表面抗沾秥處理之模仁量測角; (b)在經表面抗沾秥處理之模仁量
測角.......................................................................................................................... 70
圖4-6 為未經改沾黏處之模仁原子成份含量比...................................................... 71
圖4-7(a)為經過抗沾黏處理後之原子成份比; (b)氟含量之成分比........................ 72
圖4-8 曝光劑量能量下曝光能量&衰減量............................................................... 73
X
圖4-9 光阻厚度與轉速之間的關係圖...................................................................... 74
圖4-10 以曝光量2.2mj/cm2 曝出100 奈米線寬........................................................ 75
圖4-11 低曝光劑量的原因造成上窄下寬之圖案.................................................... 77
圖4-12 因曝光劑量過低而產生之200nm 的凹洞.................................................... 79
圖4-13(a)透過曝光量的控制於光阻上產生干涉圖案; (b)於光阻上較為明顯之干涉
圖案.......................................................................................................................... 80
圖4-14 曝光劑量為2.4mj/cm2 所曝出的80nm 線寬................................................. 82
圖4-15 曝光劑量為2.6mj/cm2 所曝出的70nm 線寬................................................. 82
圖4-16 曝光劑量為3mj/cm2 所曝出的60nm 線寬.................................................... 84
圖4-17 因過量的曝光讓轉角處產生斷點................................................................ 85
圖4-18 以光學顯微鏡拍攝曝光後的光阻層............................................................ 86
圖4-19 以SEM 拍攝曝光後之光阻層....................................................................... 87
圖4-20 經舉離後之元件圖案.................................................................................... 88
圖4-21(a)顯示表面聲波元件所量測出的頻譜圖; (b)中心頻率的位置................... 90
參 考 文 獻
1. http://book.tngs.tn.edu.tw/database/scientieic/content/1990/00020242/0006.htm
2. http://www.sia-online.org/downloads/05_Winter.pdf
3. Harry J. Levinson, 2002, “Is there light at the end of the road for optical
lithography”, IEEE Circuits and Devices Magazine 18 (4), pp. 50-58
4. 施敏, “矽器時的來臨:淺談四十年來微電子科技之成就與挑戰", 毫微米通
訊 第八卷第二期, pp.1-8
5. Bernard Fay, 2002, “Advanced optical lithography development, from UV to
EUV”, Microelectronic Engineering 61-62, pp. 11-24
6. Richard H. Stulen, Donald W. Sweeney, 1999, “Extreme Ultraviolet Lithography”,
Optics and Photonics News 10 (8), pp. 27-38
7. http://nano.nchc.org.tw/dictionary/Optical_Lithography.html
8. 陳俊儒, 2004, “65 奈米電子世代下193 奈米微影最具發展潛力", 新電子科技
雜誌
9. 張仲興, 1998, “綜合應用各種光學方法來改善積體電路光學微影製程之模擬
與研究", 國立交通大學光電工程研究所
10. M. Cannas, F. Messina, 2005, “Nd:YAG laser induced E’ centers probed by in situ
absorption masurements”, Journal of Non-Crystalline Solids 351 (21-23), pp.
1780-1783
11. 柯富祥, 2004, “奈米電子世代的微影技術", 國家奈米元件實驗室
12. Mordechai Rothschild, 2005, “projection optical lithography”, Materials Today 8
(2), pp. 18-24
13. Schellenberg, F.M., 2004, “Resolution Enhancement Technology:The Past, the
Present, and Extensions for the Future”, Proceedings of SPIE - The International
Society for Optical Engineering 5377 (PART 1), pp. 1-20
14. 邱燦賓,施敏, “電子束微影技術", 科學發展月刊,第28卷 第6期
94
15. Levenson, Marc D., Goodman, Douglas S., Lindsey, Scott, 1984, “Phase-Shigting
Mask II: Imaging Simulations and Submicrometer Resist Exposures”, IEEE
Transactions on Electron Devices ED-31 (6), pp. 753-763
16. Levenson, Marc D., Viswanathan, N.S., Simpson, Robert A., 1984, “Improving
Resolution in Photolithography with a Phase-Shifting Mask”, IEEE Transactions
on Electron Devices ED-29 (12), pp. 1828-1836.
17. Levenson, Marc D., 1991, “What IS a Phase-Shifting Mask?” Proceedings of SPIE
- The International Society for Optical Engineering 1496, pp. 20-26.
18. John A. Rogers, Kateri E. Paul, 1997, “Generating ;90 nanometer features using
near-field contact-mode photolithography with an elastomeric phase mask”,
Journal of Vacuum Science and Technology B: Microelectronics and Nanometer
Structures 16 (1), pp. 59-68.
19. John A. Rogers, Kateri E. Paul, 1997, “Using an elastomeric phase mask for
sub-100 nm photolithography in the optical near field”, Applied Physics Letters 70
(20), pp. 2658-2660.
20. Greg Wojcik, John Mould, 1994, “Some image modeling issues for I-line, 5x
phase shifting masks” SPIE Optical/Laser Microlitholography VII Proceedings, pp.
455-465.
21. James G. Goodberlet, 2002, “Patterning Sub-50 nm features with near-field
embedded-amplitude masks”, Applied Physics Letters 81 (7), pp. 1315.
22. Maria, J., Jeon, S., Rogers, J.A. , 2005 “Nanopatterning with conformable phase
masks” , Journal of Photochemistry and Photobiology A: Chemistry 166 (1-3), pp.
149-154.
23. Zhi-Yuan Li, Yadong Yin, 2001, “Optimization of elastomeric phase masks for
near-field photolithography”, Appl. Phys. Lett.78, pp.17-23.
24. Michael Paulus, 1999, “Near-field distribution in light-coupling masks for contact
lithography”, J. Vac. Sci. Technol. B ,pp.17-6.
25. S. J. McNab, R. J. Blaikie, 2000, “Analytic study of gratings patterned by
evanescent near field optical lithography” Journal of Vacuum Science and
Technology B: Microelectronics and Nanometer Structures 18 (6), pp. 2900-2904.
95
26. Lord Rayleigh, 1885, “On waves propagated along the plane surface of an elastic
solid”, Proc. London Math. Soc.17, pp. 4-8.
27. R. M. White, and F. W. Voltmer, 1965, “Direct piezoelectric coupling to surface
elastic waves”, Appl. Phys. Lett. 7, pp. 314-316.
28. http://www.cgu.edu.tw/CE/Chinese/cer/page/index.htm
29. http://www.wsi.tu-muenchen.de/E25/research/DiamondGarrido/josegarrido/Bioche
micalsensorsclass/BiochemicalSensors_Summer_2.pdf
30. Campbell,C.K., 1998, ”Surface Acoustic Wave Devices for Mobile and Wireless
Communications”, New York: Academic Press.
31. Hartmann, C.S., Bell, D.T. and Rosanfeld, R.C. 1973, ”Impulse model design of
acoustic surface wave filters” , IEEE Trans. MTT-21, pp.162-175.
32. Mack, C.A., 2001, “Lithographic simulation: a review”, Proceedings of SPIE - The
International Society for Optical Engineering 4440, pp. 59-72.
33. 莊達人,2002, “VLSI 製造技術”, 高立圖書, 第六章
34. F.Calle,J.Pedros,T.Palacios,and J.Grajal “Nitride-based surface acoustic wave
devices and applications” phys. stat. sol. (c) 2, p.976-983,2005.
35. P.K.Wei, W.S.Fann, 1998 “ The probe dynamics under shear force in near-field
scanning optical microscopy ” Journal of Applied Physics 83 (7), pp. 3461-3468
36. Pierre Thiebaud, 2002, Biosensor & Bioelectronics pp.87-17.
37. Teruo Fujii, 2002, Microelectronic engineering pp.907-61.
38. Y. Xia, X. M. Zhao and G. M. Whitesides, ,1996 “Pattern Transfer:
Self-Assembled Monolayera as Ultrathin Resists,"Microelectronic Engineering,
pp. 255-268.
96
39. 林建宏, 謝逸凡, “轉印模仁之奈米結構製作”, 機械工業, 269 期
40. Sunggook Park, Helmut Schift , Celestino Padeste, 2004, “Anti-adhesive layers on
nickel stamps for nanoimprint lithography” Microelectronic Engineering
73–74 ,pp.196–201.
41. Sunggook Park, Celestino Padeste, Helmut Schift, 2003 “N anostructuring of
anti-adhesive layers by hot embossing lithography” Microelectronic Engineering
67–68 ,pp.252–258.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top