跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 14:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何佳鴻
研究生(外文):Jia-Hong Ho
論文名稱:食鹽與脂肪對食品廢棄物堆肥化的影響
論文名稱(外文):Effects of salts and fats on composting of food wastes
指導教授:張一岑
指導教授(外文):I. C. Chang, Ph. D
學位類別:碩士
校院名稱:國立高雄第一科技大學
系所名稱:環境與安全衛生工程所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:177
中文關鍵詞:堆肥化食鹽脂肪豬油腐熟指標
外文關鍵詞:compostingsaltfatlardmaturity indices
相關次數:
  • 被引用被引用:1
  • 點閱點閱:143
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘 要
利用直立式攪拌堆肥槽探討食品廢棄物中添加食鹽與三種不同脂肪(生豬脂
肪、熟豬脂肪及豬油)對於堆肥化的影響。由實驗結果得知,各試程的堆肥化腐熟
時間隨著添加食鹽與脂肪量增加,而有逐漸增加的現象,食鹽添加量從0%的140
小時增加至1.6%的167 小時,生、熟豬脂肪添加量從0%的96 小時增加至19%的
166 小時,當添加豬油時,其堆肥化腐熟時間較添加生、熟豬脂肪長,豬油添加量
19%及34%的腐熟時間分別為209 小時及432 小時。添加油脂各試程,油脂分解率
皆高達90%以上。反應最終產物經由各種腐熟指標測試,如種子發芽試驗、C/N
比、pH 值、碳分解率、揮發固體物損失、水溶性C/N 比等皆達到腐熟指標。
ABSTRACT
This study applied a laboratory scaled composter to investigate the effects of salt
(NaCl) and three different fats (raw and cooked pig fats, and lard) on the composting of
food waste. Experimental results showed that the composting process was heavily
influenced by the contents of the salt and the fats in the waste. The time for maturity
increased from 140 hours to 167 hours when the salt content increased from 0.98% to
2.6%. When the content of pig fat in the waste increased from 0% to 19%, the time for
maturity increased from 96 hours to 166 hours. When pig fats were replaced with lard,
the time for maturity was even longer. It took 209 hours for the process to complete
when the waste contained 19% of lard. 432 hours was needed to complete when the lard
content increased to 34%. The fat conversions in all cases were over 90%. All final
products met multiple maturity indices such as seed germination, C/N ratio, pH value
etc. The effects on other composting parameters such as CO2 release rate, carbon
conversion, volatile matter loss, C/N ratios in solids and water solubles were also
studied.
目 錄
中文摘要......................................................................................................................I
英文摘要.................................................................................................................... II
誌謝...........................................................................................................................III
目錄...........................................................................................................................IV
表目錄.......................................................................................................................VI
圖目錄.......................................................................................................................IX
第一章 前言
1.1 研究緣起..............................................................................................................1
1.2 研究目的..............................................................................................................3
第二章 文獻回顧
2.1 有機廢棄物處理..................................................................................................4
2.1.1 國外有機廢棄物處理概況...........................................................................4
2.1.2 台灣廚餘問題...............................................................................................8
2.1.3 廚餘處理方法.............................................................................................11
2.1.4 廚餘堆肥處理現況.....................................................................................12
2.1.5 堆肥化設備.................................................................................................13
2.1.6 廚餘堆肥之發展延革.................................................................................14
2.1.7 台灣地區廚餘處理計畫.............................................................................16
2.2 堆肥處理基本條件............................................................................................18
2.3 生物降解過程理化性狀之變化........................................................................24
2.4 堆肥過程中微生物的分布情形........................................................................26
2.5 食品廢棄物-食鹽與脂肪...................................................................................29
2.5.1 食鹽(salt).....................................................................................................29
2.5.2 脂質(lipid) ...................................................................................................30
IV
2.5.3 堆肥過程中微生物之代謝反應.................................................................31
2.6 堆肥現況............................................................................................................36
第三章 實驗設備、材料與方法
3.1 實驗設備............................................................................................................45
3.2 堆肥化實驗材料................................................................................................49
3.3 堆肥化實驗流程................................................................................................51
3.4 實驗方法............................................................................................................52
3.5 分析項目與方法................................................................................................54
第四章 結果與討論
4.1 含鹽量之基質配製............................................................................................59
4.1.1 總反應時間與反應溫度、pH 值及導電度之關係...................................60
4.1.2 反應之三成份變化.....................................................................................68
4.1.3 反應之耗氧率變化.....................................................................................70
4.1.4 反應之CO2釋放率......................................................................................72
4.1.5 總揮發性固體物累積損失率.....................................................................74
4.1.6 水溶性成分變化.........................................................................................76
4.1.7 元素分析結果.............................................................................................80
4.1.8 規劃求解-二氧化碳釋放率........................................................................83
4.2 脂肪種類比較....................................................................................................89
4.2.1 生脂肪之生物降解反應.............................................................................90
4.2.2 熟脂肪生物降解反應............................................................................... 111
4.2.3 豬油之生物降解反應...............................................................................130
第五章 結論與建議
5.1 結論..................................................................................................................152
5.2 建議..................................................................................................................155
第六章 參考文獻...................................................................................................156
V
表目錄
表2.1 各國廢棄物之處理方式與垃圾量.................................................................4
表2.2 荷蘭之下水道污泥、沉積物與堆肥乾物質成分的限值.............................7
表2.3 台灣地區近年垃圾產量及清理統計表.........................................................9
表2.4 垃圾性質分析.................................................................................................9
表2.5 廚餘基本性質分析.......................................................................................10
表2.6 廚餘採樣分析...............................................................................................10
表2.7 廚餘資源化技術評估................................................................................... 11
表2.8 廚餘處理技術比較表...................................................................................13
表2.9 台灣地區設置垃圾堆肥場之歷史及概況...................................................15
表2.10 台灣堆肥場經營失敗原因.........................................................................16
表2.11 九十年度廚餘清運與回收再利用示範計畫表.........................................17
表2.12 堆肥中主要有機物之微生物分解情形.....................................................27
表2.13 好氧性堆肥化過程中微生物數量分布.....................................................28
表2.14 堆肥產品之化學分析.................................................................................38
表3.1 生物降解(堆肥化)反應之實驗材料成份分析............................................50
表4.1 含鹽量之基質成份組成比例.......................................................................60
表4.2 含鹽量之反應時間與溫度、pH 值及導電度關係.....................................68
表4.3 各含鹽量試程之初期及末期三成份變化...................................................69
表4.4 含鹽量之各階段耗氧率最大值與尖峰時間...............................................71
表4.5 含鹽量之各試程之CO2釋放率....................................................................73
表4.6 含鹽量與總揮發性固體物累積損失率之關係...........................................76
表4.7 含鹽量各試程之水溶性成分初期及末期之變化.......................................80
表4.8 各含鹽量試程之初期與末期元素分析之變化...........................................82
VI
表4.9 各試程之單位時間內CO2釋放率、單位時間下最大CO2釋放率及反應遲
滯期分析結果...............................................................................................86
表4.10 各脂肪含量試程之基質配製成份組成比例.............................................89
表4.11 生脂肪含量之總反應時間、溫度、pH 值及導電度...............................94
表4.12 生脂肪含量之反應初期及末期三成份之變化情形.................................95
表4.13 生脂肪含量之各階段耗氧率最大值與時間.............................................97
表4.14 生脂肪含量各試程之各階段二氧化碳釋放率.......................................100
表4.15 生脂肪含量與總揮發性固體物累積損失率...........................................102
表4.16 生脂肪量試程之水溶性成分初期及末期之變化...................................105
表4.17 生脂肪之油脂分解率...............................................................................107
表4.18 生脂肪之各試程單位時間內CO2釋放率、單位時間下最大CO2釋放率
及反應遲滯期分析結果...........................................................................108
表4.19 熟脂肪含量之反應時間與溫度、pH 值及導電度................................. 114
表4.20 熟脂肪含量之反應初期及末期三成份之變化....................................... 115
表4.21 熟脂肪含量之各階段耗氧率最大值與時間........................................... 117
表4.22 熟脂肪含量之各試程之CO2釋放率........................................................ 119
表4.23 熟脂肪含量與總揮發性固體物累積損失率...........................................121
表4.24 熟脂肪量試程之水溶性成分初期、末期之變化...................................124
表4.25 熟脂肪之油脂分解率...............................................................................125
表4.26 熟脂肪之各試程單位時間內CO2釋放率、單位時間下最大CO2釋放率
及反應遲滯期分析結果...........................................................................127
表4.27 豬油含量之總反應時間、溫度、pH 值及導電度.................................136
表4.28 豬油含量之反應初期及末期三成份之變化情形...................................137
表4.29 豬油含量之各階段耗氧率最大值與時間...............................................139
表4.30 豬油含量各試程之CO2釋放率................................................................141
表4.31 豬油含量與總揮發性固體物累積損失率...............................................143
表4.32 豬油含量試程之水溶性成分初期及末期之變化...................................146
表4.33 豬油之油脂分解率...................................................................................148
VII
表4.34 熟脂肪之各試程單位時間內CO2釋放率、單位時間下最大CO2釋放率
及反應遲滯期分析結果...........................................................................149
表4.35 各試程之腐熟指標...................................................................................154
VIII
圖目錄
圖2.1 四種不同堆肥方式.........................................................................................5
圖2.2 農業廢棄物製造堆肥方法...........................................................................14
圖2.3 收集與堆肥設備...........................................................................................36
圖2.4 薩拉索塔(Sarasota)堆肥場處理情況...........................................................37
圖2.5 食品廢棄物堆肥化時間與反應溫度...........................................................37
圖2.6 紐約的Washington County和Rockland County兩城市的堆肥場情況.......38
圖2.7 台灣廚餘堆肥場處理情況...........................................................................40
圖3.1 堆肥化實驗設備示意圖...............................................................................47
圖3.2 直立式攪拌反應槽.......................................................................................48
圖3.3 CO2╱O2濃度分析儀.....................................................................................48
圖3.4 堆肥化實驗流程...........................................................................................51
圖3.5 食鹽與導電度關係.......................................................................................55
圖3.6 溫度與NaCl 溶解度關係.............................................................................55
圖4.1 含鹽量(0.98%)之反應時間與溫度、pH 及導電度之關係........................63
圖4.2 含鹽量(1.39%)之反應時間與溫度、pH 及導電度之關係........................64
圖4.3 含鹽量(1.80%)之反應時間與溫度、pH 及導電度之關係........................65
圖4.4 含鹽量(2.60%)之反應時間與溫度、pH 及導電度之關係........................66
圖4.5 含鹽量與各階段最高溫時間及酸化遲滯期之關係...................................67
圖4.6 含鹽量之反應時間與耗氧量之關係...........................................................70
圖4.7 含鹽量之反應時間及二氧化碳釋放率之關係...........................................72
圖4.8 含鹽量之反應時間與二氧化碳累積釋放量之關係...................................73
圖4.9 含鹽量之反應時間與總揮發性固體物累積損失率之關係.......................75
圖4.10 含鹽量(0.98%)之水溶性成分變化............................................................77
IX
圖4.11 含鹽量(1.39%)之水溶性成分變化............................................................77
圖4.12 含鹽量(1.80%)之水溶性成分變化............................................................78
圖4.13 含鹽量(2.60%)之水溶性成分變化............................................................78
圖4.14 含鹽量之各試程水溶性C/N 變化............................................................79
圖4.15 反應時間與CO2累積釋放量和單位時間CO2釋放率之關係圖...............85
圖4.16 含鹽量與P 值關係圖.................................................................................87
圖4.17 含鹽量與R 值關係圖.................................................................................87
圖4.18 含鹽量與λ值關係圖.................................................................................88
圖4.19 生脂肪含量(16%)之反應時間與溫度、pH 及導電度之關係.................90
圖4.20 生脂肪含量(25%)之反應時間與溫度、pH 及導電度之關係.................91
圖4.21 生脂肪含量(35%)之反應時間與溫度、pH 及導電度之關係.................92
圖4.22 生脂肪含量之反應時間與耗氧量之關係.................................................96
圖4.23 生脂肪含量之反應時間與二氧化碳釋放率之關係.................................98
圖4.24 生脂肪含量之反應時間與二氧化碳累積釋放量之關係.........................99
圖4.25 生脂肪含量之反應時間與總揮發性固體物累積損失率之關係...........101
圖4.26 脂肪含量(16%)之水溶性成分變化.........................................................102
圖4.27 生脂肪含量(25%)之水溶性成分變化.....................................................103
圖4.28 生脂肪含量(35%)之水溶性成分變化.....................................................103
圖4.29 生脂肪之各試程水溶性C/N 變化..........................................................104
圖4.30 生脂肪含量各試程之反應時間與含油率變化之關係...........................106
圖4.31 生脂肪含量與P 值關係...........................................................................109
圖4.32 生脂肪含量與R 值關係...........................................................................109
圖4.33 生脂肪含量與λ值關係........................................................................... 110
圖4.34 熟脂肪含量(25%)之反應時間與溫度、pH 及導電度之關係............... 111
圖4.35 熟脂肪含量(35%)之反應時間與溫度、pH 及導電度之關係............... 112
圖4.36 熟脂肪含量之反應時間與耗氧率之關係............................................... 116
圖4.37 熟脂肪含量之反應時間與二氧化碳釋放率之關係............................... 118
圖4.38 熟脂肪之反應時間與二氧化碳釋放量之關係....................................... 118
X
圖4.39 熟脂肪含量與總揮發性固體物累積損失率之關係...............................120
圖4.40 熟脂肪含量(25%)之水溶性成分變化.....................................................122
圖4.41 熟脂肪含量(35%)之水溶性成分變化.....................................................122
圖4.42 熟脂肪之各試程水溶性C/N 變化..........................................................123
圖4.43 熟脂肪含量各試程之反應時間與含油率變化之關係...........................125
圖4.44 熟脂肪含量與P 值關係...........................................................................128
圖4.45 熟脂肪含量與R 值關係...........................................................................128
圖4.46 熟脂肪含量與R 值關係...........................................................................129
圖4.47 豬油含量(25%)之反應時間與溫度、pH 及導電度關係.......................130
圖4.48 豬油含量(35%)之反應時間與溫度、pH 及導電度關係.......................131
圖4.49 豬油含量(50%)之反應時間與溫度、pH 及導電度關係.......................133
圖4.50 反應產生放射菌或絲狀真菌的黴菌等微生物.......................................135
圖4.51 豬油含量之反應時間及耗氧率關係.......................................................138
圖4.52 豬油含量之反應時間與CO2釋放率關係................................................140
圖4.53 豬油含量之反應時間與二氧化碳釋放量之關係...................................140
圖4.54 豬油含量與總揮發性固體物累積損失率之關係...................................142
圖4.55 豬油含量(25%)之水溶性成分變化.........................................................144
圖4.56 豬油含量(35%)之水溶性成分變化.........................................................144
圖4.57 豬油含量(50%)之水溶性成分變化.........................................................145
圖4.58 豬油含量各試程之水溶性C/N 變化......................................................145
圖4.59 豬油含量各試程之反應時間與含油率變化之關係...............................147
圖4.60 豬油含量與P 值關係...............................................................................150
圖4.61 豬油含量與R 值關係...............................................................................150
圖4.62 豬油含量與λ值關係...............................................................................151
參考文獻
1. 行政院環保署,2004,環境公務統計報表,行政院環境保護署
2. 李應煌、盧金鎮,1994,家禽畜排泄物及其堆肥各種理化性狀成分調查分析,
八十三年度畜牧污染防治試驗研究計畫成果報告彙編,台灣省畜產試驗所編
印,頁189~194
3. 吳國雄,2003,食品廢棄物好氧性生物降解(堆肥化),國立高雄第一科技大學
環安所碩士論文
4. 巫慶珊,2004,食品廢棄物好氧生物降解之化學及生物特性研究,國立高雄第
一科技大學環安所碩士論文
5. 林財旺、張武莉,1993,堆肥腐熟度判定法與利用自產堆肥接種改善堆肥生產
效率之研究,八十二年畜牧污染防治試驗研究計畫成果報告彙編,台灣省畜產
試驗所編印,頁137~142
6. 林冠嘉,2004,廚餘資源化技術(二),技術報告
7. 林鴻淇,1994,堆肥材料、堆肥化過程與堆肥品質,堆肥技術及其利用研討會
論文集,頁35~48
8. 林秋裕,1995,環境工程微生物學,國彰出版社,頁145~154
9. 林殿琪,1999,論台灣家庭廚餘堆肥現況與未來發展探討,國立台灣大學環境
工程研究所碩士論文
10. 林子傑,2001,廚餘堆肥控制策略之探討,國立台灣大學生物產業機電工程學
研究所碩士論文
11. 官路,1990,下水污泥堆肥化操作因子之研究,國立中央大學土木工程學研究
156
所碩士論文
12. 依日光,1995,污泥處理工學,復漢出版社
13. 邱鍵人,1971,食品工業微生物學,復文書局
14. 邱政文,1999,美國堆肥系統的現況,堆肥之現況,美國蔽咧騝|編印,台北,
頁1~6
15. 洪明龍,2000,家庭廚餘與下水污泥共同堆肥之資源化研究,國立台灣大學環
境工程所碩士論文
16. 洪明龍、楊萬發,2001,家庭廚餘與下水污泥共同堆肥之資源化研究,化工技
術,94,頁148-158
17. 馬哲儒,2000,大自然的規律,國立成奶j學出版組
18. 袁紹英,1987,廢棄物生物處理技術,文翔圖書有限公司
19. 袁紹英,1994,廢棄物堆肥化過程的微生物作用,堆肥技術及其利用研討會論
文集,頁67~83
20. 翁震炘,1998,禽畜糞堆肥處理技術與獸醫公共衛生之探討,國立中興大學獸
醫學研究所碩士論文
21. 國立編譯館,1999,國民中學生物上下冊
22. 陳文卿、陳國帝,2002,有機廢棄物處理之技術與對策,推動有機資源(廚餘)
應用技術研討會論文集,頁1~24
23. 陳建志,2002,九十年度環保署廚餘清運與回收再利用示範計畫回顧追蹤,有
機資源報,試刊參號,第一版
24. 郭哲佑,2003,台灣廚餘回收再利用管理機制之探討研究-以台塑麥寮回收制度
為例,國立南華大學環境管理研究所碩士論文
25. 黃汝賢、林達昌、洪錫禎,1995,果菜市場廢棄物之減量策略(第一年),國立
成奶j學環境工程研究報告第163 號
157
26. 楊盛行,1994,堆肥過程中微生物相變化及高溫放線菌之分離及應用,土壤肥
料試驗報告,台灣省政府農林編印,頁338~357
27. 楊盛行,1995,廢棄物堆肥化微生物菌種之開發及應用,永續農業研究及推廣
研討會專輯,頁47~65
28. 楊萬發,1996,有機事業廢棄物堆肥處理技術,經濟部工業局
29. 楊盛行、蔡書憲,2002,廚餘之處理及再利用,立法院院聞,30 (3),頁38~53
30. 曾四恭,1994,養豬廢水去磷技術之檢討,第三屆國際畜牧污染防治技術研討
會專輯,行政院農委會,頁54~71
31. 閔航,1999,微生物學,浙江大學出版社
32. 蔡人傑,2003,蔬菜廢棄物好氧生物降解(堆肥化),國立高雄第一科技大學環
安所碩士論文
33. 蔡書憲,2003,廚餘製作及品質之探討,國立台灣大學農業化學研究所碩士論

34. 鄭幸雄,1993,微生物去氮去磷之原理及程序控制,養豬業與環保研討會論文
集,台灣省畜產試驗所專輯16 卷,頁1~20
35. 鄭東益,1997,污泥資源化固態醱酵之研究,國立雲林科技大學環境與安全工
程技術研究所碩士論文
36. 鄭凱尹,2000,高溫厭氧消化廚餘之研究,國立屏東科技大學環境工程與科技
研究所碩士論文
37. 盧金鎮,1994,雞糞及其堆肥之成分調查分析,中華生質能源學會會誌13 卷,
頁147~154
38. 謝錦松、黃正義,1991,固體廢棄物處理,修定三版,淑馨出版社
39. 謝欽城,1999,各種堆肥設備之簡介,農業委員會農業試驗所特刊第88 號,
頁27
158
40. 羅中恆,2003,廚餘高速醱酵設備技術,台灣環保產業雙月刊13
41. 簡宣裕、吳繼光,1994,廢棄太空包木屑、雞糞製造堆肥之研究,土壤肥料試
驗報告
42. Atlas R. M. & Bartha R., 1998, Microbial ecology: fundamentals and applications,
Cummings Science Publishing, pp.694
43. Albert Koenig & Quazi H. Bari, 2000, Application of self-heating test for Indirect
Estimation of Respirometric Activity of Compost, Theory and practice Compost
Science Utilization, Vol.8, No.2, pp.99~107
44. Biocycle, 1999, Sapporo Symposium Reviews Organics Recycling Developments,
Biocycle, December, pp.62-64
45. Britt Faucette, K. C. Das & Mark Risse, 2000, Evaluation of aerated container
composting of university preconsumer and postconsumer food waste, Research and
Development Session, pp.167~176
46. David Tompkins, 2005, Composting food waste, The University of Plymouth
47. Deniz Cekmecelioglu, Ali Demirci, Robert E. Graves & Nadine H. Davitt, 2005,
Applicability of optimised in-vessel food waste composting for windrow systems,
Biosystems Engineering, Vol.91, No.4, pp.479~486
48. Dimitris P. Komilis, 2005, A kinetic analysis of solid waste composting at optimal
conditions, Waste Management, Vol.26, pp.82~91
49. Dimitris P. Komilis & Robert K. Ham, 2006, Carbon dioxide and ammonia
emissions during composting of mixed paper, yard waste and food waste, Waste
Management, Vol.26, No.1, pp.62~70
50. Droffner, M.L. & W.F. Brinton, 1995, Survival of E. coli and Salmonella
populations in aerobic thermophilic compost as measured with DNA gene probes,
159
Zentralblatt fuer Hygiene undUmweltmedizin, Vol.197, pp.387~397
51. Eighmy, T. T. & D. S. Kosson, 1996, U.S.A. National Overview on Waste
Management, Waste Management, Vol.16, pp.361-366
52. Fernado Fernandes, Maurice Viel, Daniel Sayag & Louis Andre, 1988, Microbial
breakdown of fats through in-vessel co-composting of agricultural and urban wastes,
Biological Wastes, Vol.26, pp.33~48
53. G. R. Lemus & A. K. Lau, 2002, Biodegradation of lipidic compounds in synthetic
food wastes during composting, Canadian Biosystems Engineering, Vol.44,
pp.6.33~6.39
54. Ghita Ait Baddi, Jose Antonio Alburquerque, Jose Gonzalvez, Juan Cegarra &
Mohamed Hafidi, 2003, Interational Biodeterioration & Biodegradation, Vol.54,
pp.39~44
55. Hartlen, J., 1996, Waste Management in Sweden, Waste Management, Vol.16, pp.
385-388
56. Hartsock D. R., G. Croteau & J. Gage, 1994, Uniform Aeration of Compost Media,
Proceedings of National Waste Processing Conference, ASME, New York, USA,
pp.215~219
57. James I. Chang, J. J. Tsai & K. H. Wu, 2006, Composting of vegetable waste, Waste
Management & Research, Vol.24, pp.1~9
58. Jiunn-Jyi Lay, Yu-You Li & Tatsuya Noike, 1998, Mathematical model for methane
production from landfill bioreaction, Journal of Environmental Engineering,
pp.730~736
59. K. C. Das E. W. Tollner & M. A. Eiteman, 2000, Improving composting by control
of the solid matrix structure, Research and Development Session, pp.157~166
160
60. Kiyohiko Nakasaki & Kazuki Nagasaki, 2004, Degradation of fats during
thermophilic composting of organic waste, Vol.22, pp.276~282
61. Kiyohiko Nakasaki & Akihito Ohtaki, 2002, A simple numerical model for
predicting organic matter decomposition in a fed-batch composting operation,
Journal of Environmental Quality, Vol.31, pp.997~1003
62. Kristin Steger, Asa Jarvis, Sven Smars & Ingvar Sundh, 2003, Comparison of
signature lipid methods to determine microbial community structure in compost,
Journal of Microbiological Methods, Vol.55, pp.371~382
63. Kuhlman L.R., 1990, Windrow Composting of Agricultural and Municipal Wastes,
Conservation and Recycling, Vol.4, pp.151~160
64. Miller F. C., 1992, Composting as Process Based on the Control of Ecologically
Selective Factors, Soil Microbial Ecology, pp.515~554
65. Monica Ozores-Hampton, Ph. D, 2003, Food Waste Composting, Institute of Food
and Agricultural Sciences
66. Naozumi Sasaki, Ken-Ichiro Suehara, Jiro Kohda, Yasuhisa Nakano & Takuo Yano,
2003, Effects of C/N ratio and pH of raw materials on oil degradation efficiency in a
compost fermentation process, Journal of Bioscience and Bioengineering, Vol.96,
No.1. pp.47~52
67. Quazi H. Bari, Albert Keonig & Tao Guihe, 2000, Kinetic analysis of forced
aeration composting-reaction rates and temperature, Waste Management &
Research, Vol.18, pp.303~312
68. Roger T. H, 1979, Engineering Principles of Sludge Composting, J. WPCF,Vol.51,
No.8
69. Sakai, S. I., 1996, Municipal Solid Waste Management in Japan, Waste
161
Management, Vol.16, pp.395-405
70. Sawell, S. E., S. A. Hetherington & A. J. Chandler, 1996, An Overview of Municipal
Solid Waste Management in Canada, Waste Management, Vol.16, pp.351-359
71. Somen J., M. Margetic, J. Valjavec & D. Vuk, 1994, Composting Sludges from
Municipal Wastewater Treatment Plants from Two Slowenian Towns, Journal of
Hazardous Materials, Vol.37, pp.165~170
72. Sung-Hwan Kwon & Dong-Hoon Lee, 2003, Evaluation of Korean food waste
composting with fed-batch operation I: using water extractable total organic carbon
cintents, Process Biochemistry, Vol.39, No.10, pp.1183~1194
73. Taki, K., 2001, Supply and Demand of Composted Manure in Japanese Nursery
Production, Biocycle, February, pp.71-72
74. Thambirajah, J. J., M. D. Zulkali & M. A. Hashim, 1995, Microbiological and
biochemical changes during the composting of oil palm empty-fruit-bunches. Effect
of nitrogen supplementation on the substrates, Biores. Technol. Vol.52, pp.133-144
75. K.C.Das, E.W.Tollner & M.A.Eiteman, Improving Composting By Control Of The
Solid Matrix Structure,Research and Development Session
76. Vehlow, J. 1996, Municipal Solid Waste Management in Germany, Waste
Management, Vol.16, pp.367-374
77. Van der Sloot, 1996, Present Status of Waste Management in The Netherlands,
Waste Management, Vol. 16, pp.375~383
78. Vicky L.M. Vestal J. R. Atal. E. E., 1985, Microbilal Activity in Composting,
Biocycle.26,3541.1985
79. Yang,S,S., 2000, Recent Advance in Composting, Proceedings of the International
Seminar on Issues in the Management of Agricultural.
162
80. Yeon-Koo Jeong & Sun-Jin Hwang, 2004, Optimum doses of Mg and P salts for
precipitating ammonia into struvite crystals in aerobic composting, Bioresource
Technology, Vol.96, pp.1~6
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top