跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.138) 您好!臺灣時間:2024/09/16 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊慈生
研究生(外文):Tzu-Sheng-Chuang
論文名稱:雙黃烷酮類電化學合成應用研究
論文名稱(外文):Electrochemical Synthetic Application of Bisflavanones
指導教授:陳阿煌彭金恢
指導教授(外文):Arh-Hwang-Chen
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:116
中文關鍵詞:電化學雙黃烷酮6-甲氧基黃酮66’-二甲氧基-22’-外消旋雙黃烷酮66’-二甲氧基-22’-內消旋雙黃烷酮6-甲氧基黃烷酮
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
雙黃酮類化合物常見於天然植物中,主要應用在抑制B型肝炎病毒、抗癌和增強免疫能力。本實驗利用Baker-Venkataraman重排反應合成6-甲氧基黃酮,再採用電化學雙聚合方法探討雙黃酮合成應用研究,瞭解黃酮類化合物之電化學反應及其影響的因素。6-甲氧基黃酮的電解還原反應,得到兩種產物分別為6,6’-二甲氧基-2,2’-外消旋雙黃烷酮和6,6’-二甲氧基-2,2’-內消旋雙黃烷酮,另有一還原產物6-甲氧基黃烷酮,並發現起產物產率明顯受到電極材料、電解質和反應溫度等各種因素影響。在反應條件0.1M甲醇硫酸、溫度0℃和0.01A定電流反應時,以鉛為因即可得到6,6’-二甲氧基-2,2’-外消旋雙黃烷酮和6,6’-二甲氧基-2,2’-內消旋雙黃烷酮較高產率。
Biflavonoids usually exist in natural plants. They were found to have some activities in hepatitis B virus, anti-cancer,anti-spasm, improving immunity. 6-Methoxyflavone were synthesized by Baker- Venkataraman Rearrangement. We tried to invesgate the factors which affect the electroorganic dimerization of 6-methoxyflavone was easily reduced by using electrochemical method to give two hydrodimers of 6,6’-dimethoxy-2,2’-biflavanone (racemate) and 6,6’-dimethoxy-2,2’- biflavanone (meso) and one reductive product of 6-methoxyfiavaanone. Their yields were dependent on the nature of electrodes, the kinds of supporting electrolytes and the reaction temperature. They were found to afford higher yields of 6,6’-dimethoxy-2,2’-biflavanone (racemate), 6,6’-dimethoxy-2,2’-biflavanone (meso) and 6-methoxyfiavaanone.(24.9﹪, 22.9﹪,and38.5﹪,respectively,) in the reaction condition of Pd(-)/C(+)-0.1MH2SO4/MeOH-20F/mol at 0℃
致謝 Ⅰ
中文摘要 Ⅱ
英文摘要 Ⅲ
目錄 Ⅳ
圖目錄 Ⅵ
第一章 序論
1-1. 黃酮類化合物 1
1-2. 黃酮類化合物的合成 16
1-3. 雙黃酮類化合物 20
1-4. 雙黃酮類化合物的合成 25
1-5. 有機電化學合成 34
第二章 研究動機與構想
2-1. 研究動機 40
2-2. 合成構想 41
第三章 實驗部分
3-1. 儀器與試藥 44
3-2. 實驗步驟 47
第四章 結果與討論
4-1. 黃酮類化合物的合成 58
4-2. 2,2’-雙黃烷酮類化合物的合成 62
第五章 結論 69
第六章 參考文獻 71
第七章 附錄一
7-1. 紫外線吸收光譜 75
7-2. 紅外線吸收光譜 84
7-3. 核磁共振光譜 93
7-4. 質譜圖 111


圖目錄
1. 紫外線吸收光譜
附圖1. 1,4-二乙醯氧基苯(84)之紫外線吸收光譜 75
附圖2. 2,5-二羥基苯乙酮(85)之紫外線吸收光譜 76
附圖3. 2-羥基-5-甲氧基苯乙酮 (86)之紫外線吸收光譜圖 77
附圖4. 2-芐醯氯基-5-甲氧基苯乙酮(87)之紫外線吸收光譜圖 78
附圖5. 2-羥基-5-甲氧基-二芐醯基甲烷(88)之紫外線吸收光譜圖 79
附圖6. 6-甲氧基黃酮(89)之紫外線吸收光譜圖 80
附圖7. 6,6’-雙甲氧基-2,2’-外消旋黃烷酮(90a)之紫外線吸收光譜圖 81
附圖8. 6,6’-雙甲氧基-2,2’-內消旋黃烷酮(90b)之紫外線吸收光譜圖 82
附圖9. 6-甲氧基黃烷酮(91)之紫外線吸收光譜圖 83

2. 紅外線吸收光譜
附圖10. 1,4-二乙醯氧基苯(84)之紅外線吸收光譜 84
附圖11. 2,5-二羥基苯乙酮(85)之紅外線吸收光譜 85
附圖12. 2-羥基-5-甲氧基苯乙酮 (86)之紅外線吸收光譜圖 86
附圖13. 2-芐醯氯基-5-甲氧基苯乙酮(87)之紅外線吸收光譜圖 87
附圖14. 2-羥基-5-甲氧基-二芐醯基甲烷(88)之紅外線吸收光譜圖 88
附圖15. 6-甲氧基黃酮(89)之紅外線吸收光譜圖 89
附圖16. 6,6’-雙甲氧基-2,2’-外消旋黃烷酮(90a)之紅外線吸收光譜圖 90
附圖17. 6,6’-雙甲氧基-2,2’-內消旋黃烷酮(90b)之紅外線吸收光譜圖 91
附圖18. 6-甲氧基黃烷酮(91)之紅外線吸收光譜圖 92

3. 核磁共振光譜
附圖19. 1,4-二乙醯氧基苯(84)之氫核磁共振光譜圖 93
附圖20. 1,4-二乙醯氧基苯(84)之碳十三核磁共振光譜圖 94
附圖21. 2,5-二羥基苯乙酮(85)之氫核磁共振光譜圖 95
附圖22. 2,5-二羥基苯乙酮(85)之碳十三核磁共振光譜圖 96
附圖23. 2-羥基-5-甲氧基苯乙酮 (86)之氫核磁共振光譜圖 97
附圖24. 2-羥基-5-甲氧基苯乙酮 (86)之碳十三核磁共振光譜圖 98
附圖25. 2-芐醯氯基-5-甲氧基苯乙酮(87)之氫核磁共振光譜圖 99
附圖26. 2-芐醯氯基-5-甲氧基苯乙酮(87)之碳十三核磁共振光譜圖 100
附圖27. 2-羥基-5-甲氧基-二芐醯基甲烷(88)之氫核磁共振光譜圖 101
附圖28. 2-羥基-5-甲氧基-二芐醯基甲烷(88)之碳十三核磁共振光譜圖 102
附圖29. 6-甲氧基黃酮(89)之氫核磁共振光譜圖 103
附圖30. 6-甲氧基黃酮(89)之碳十三核磁共振光譜圖 104
附圖31. 6,6’-雙甲氧基-2,2’-外消旋黃烷酮(90a)之紅氫核磁共振光譜圖 105
附圖32. 6,6’-雙甲氧基-2,2’-外消旋黃烷酮(90a)之碳十三核磁共振光譜圖 106
附圖33. 6,6’-雙甲氧基-2,2’-內消旋黃烷酮(90b)之氫核磁共振光譜圖 107
附圖34. 6,6’-雙甲氧基-2,2’-內消旋黃烷酮(90b)之碳十三核磁共振光譜圖 108
附圖35. 6-甲氧基黃烷酮(91)之氫核磁共振光譜圖 109
附圖36. 6-甲氧基黃烷酮(91)之碳十三核磁共振光譜圖 110

4. 質譜圖
附圖37. 1,4-二乙醯氧基苯(84)之質譜圖 111
附圖38. 2,5-二羥基苯乙酮(85)之質譜圖 112
附圖39. 2-羥基-5-甲氧基苯乙酮 (86)之質譜圖 113
附圖40. 2-芐醯氯基-5-甲氧基苯乙酮(87)之質譜圖 114
附圖41. 2-羥基-5-甲氧基-二芐醯基甲烷(88)之質譜圖 115
附圖42. 6-甲氧基黃酮(89)之質譜圖 116
1. Harborne, J. B. The Flavonoids. 1995, pp.189-245, 505-623.
2. 林宗旦;林美昭 最新植物化學,1985, 401-449
3. Knight, J. A. Ann Clin. Lab. Sci. 1995, 25, 111.
4. Ono, K.; Nakane, H. Differential inhibitory effects of some catechin derivatives on the activities of human immunodeficiency virus reverse transcriptase and cellular deoxyribonucleic and ribonucleic acid polymerases. Biochemistry. 1990 ,29, 2841-2845.
5. Inouye, Y.; Yamaguchi, K.; Take, Y.; Nakamura, S. J. Antibiotics 1989, 42,1523.
6. Ross, E. Concepts in Biology, McGraw-Hill, 1989, pp.50-51.
7. Wan, Y.; Vinson, J. A.; Etherton, T. D.; Proch, J.; Lazarus, S. A. andKris-Etherton, P. M. Am. J. of Clin. Nutr. 2001, 74, 596.
8. Robinson, R.; Venkataraman, K. J. Chem. Soc. 1926, 2344.
9. Furniss, B. S.; Hannaford, A. J.; Smith, P. W. G.;Tatchell, A. R. Textbookof Practical Organic Chemistry, Longman Scientic & Techical, New York, 1989, pp.1192-1195.
10. Le Floc’h, Y.; Lefeuvre, M. Synthese de trihydroxyphenacylidenetriphenylphosphoranes une nouvelle voie d'acces aux dihydroxyflavones. Tetrahedron Lett. 1986, 27, 5503-5504.
11. Le Floc’h, Y.; Lefeuvre, M. Synthese de dihydroxy phenacylidene triphenylphosphoranes nouveaux precurseurs de composes flavonoides: Synthese d'hydroxy-6 et hydroxy-7 chromones. Tetrahedron Lett. 1986, 27, 2751-2752.
12. Cushman, M.; Nagarathnam, D. A method for the facile synthesis of ring-A hydroxylated flavones. Tetrahedron Lett. 1990, 31, 6497-6500.
13. Looker, J. H.; Hanneman, W. W. Physical and Chemical Properties of Hydroxyflavones. II. 3-Aroyl-5-hydroxyflavones. Synthetic and Infrared Spectral Studies. J. Org. Chem. 1962, 27, 3261-3263.
14. Bass, R. J. J. Chem. Soc. Chem. Comm. 1976, 2, 78.
15. Hase, T. A.; Wahala, K. J. Chem. Soc. Perkin Trans. 1. 1991, 3005.
16. Lu, K. K.; Tan, Z.; Li, Y. L.; Wang, X. Chin. Chem. Lett. 1995, 6, 143.
17. Kim, H. K.; Son, K. H.; Chang, H. W. Planta Medica. 1999, 65, 465.
18. Zembower, D. E.; Zhang, Z. Total Synthesis of Robustaflavone, a Potential Anti-Hepatitis B Agent. J. Org. Chem. 1998, 63, 9300-9305.
19. Satterfiled, M.; Brodbelt, J. S. Enhanced Detection of Flavonoids by Metal Complexation and Electrospray Ionization Mass Spectrometry. Anal. Chem. 2000, 72, 5898-5906.
20. Zhu, J.; Wang, Q.; Li, Y. J. Chem. Soc. Comm. 1988, 1549.
21. S. Ahmad; S. Razaq. New synthesis of biflavones of cupressuflavone series. Tetrahedron. 1976, 32, 503-506.
22. Molyneux, R. J.; Waiss, A. C.; Haddon, W. F. Tetrahedron. The mechanism of the catalytic hydrogenation of α , β unsaturated carbonyl compounds-V. 1970, 26, 1409- 1416.
23. Reiner G. H. Kirrstetter*; Uwe Vagt. Chem. Ber. 1981, 114, 630.
24. Zembower, D. E.; Zhang, Z. Total Synthesis of Robustaflavone, a Potential Anti-Hepatitis B Agent. J. Org. Chem. 1998, 63, 9300-9305.
25. (a) Lu, K. K.; Tan, Z.; Li, Y. L.; Wang, X. Chin. Chem. Lett. 1995, 6, 143. (b)Chen, A. H.; Cheng, C. Y.; Chen, C. W. J. Chin. Chem. Soc. 2002, 49,1105.(c) 鄭傑元,國立高雄師範大學化學系碩士論文, 2002.
26. Yokoe, I.; Taguchi, Mariko.; Shirataki,Y. J. Chem. Soc. Comm. 1979, 333.
27. Chen, C. F.; Zhu, Y.; Liu, Y. C.; Xu, J. H. Tetrahedron Lett. 1995, 36,782835.
28. Kolbe, H. Ann. Chem. 1849, 69, 257.
29. Kaas, N. C.; Limborg, F.; Glens, K. Acta. Chem. Scand. 1952, 6, 531.
30. Shono, T. Electroorganic Chemirtry as a New Tool in Organic Synthesis,Springer-Verlag, New York. 1984, pp.1-4.
31. Shono, T. Electroorganic Synthesis, Academic press, 1991, pp.1-10.
32. Rastelli, G.; Costanino, L.; Albasini, A. Eur. J. Med. Chem. 1995, 30, 141.
33. Paquette, L. A.; Stucki, H. A New General Approach to the Synthesis of Oxygen-Containing Heterocycles by Virtue of Hydroxyl Neighboring Group Participation. The Condensation of Enamines with Salicylaldehydes . J. Org. Chem. 1966, 31, 1232-1235.
34. Donnelly, D. M. X.; Thompson, J. C. J. Chem. Soc. Perkin Trans. 1. 1973, 1737.
35. Kirrstetter, R. G.; Vagt, U. Chem. Ber. 1981, 114, 630.
36. Li, L. Y.; Wang, Q.; Zhu, J. P. J. Chem. Soc., Chem. Comm. 1988, 1549.
37. Sun, C. M.; Syu, W. J.; Huang, Y. T.; Chen, C. C.; Ou, J. C. Selective Cytotoxicity of Ginkgetin from Selaginella moellendorffii. J. Nat. Prod. 1997, 60, 382-384.
38. Krishnamurty, H. G.; Prasad, J. S. A new synthesis of isoflavones using ‘active formate’. Tetrahedron Lett. 1977, 18, 35, 3071-3072.
39. Pelter, A.; Foot, S. Syn. Comm. 1976, 326.
40. Ishiyama, T.; Hayashi, T.; Kizaki, H.; Suzuki, A.; Miyaura, N. Palladium-Catalyzed Carbonylative Cross-Coupling Reaction of Arylboronic Acids with Aryl Electrophiles: Synthesis of Biaryl Ketones. J. Org.Chem. 1998, 63, 4726-4731.
41. Farooq, M. O.; Rahman, W.; Nasim, K. T. Studies on the C-Methyl- -benzopyrone System. Orientation in the Isoflavone Series. J. Org. Chem. 1962, 27, 944-948.
42. Farooq, M. O.; Rahman, W.; Ilyas, M.; Jehan, M. S. Chem. Ber. 1961, 94,1996.
43. Balasubramanian, B.; Ward, D. L.; Niar, M. G. J. Chem. Soc. Perkin Trans.1. 2000, 567.
44. Ramakrishnan, V. T.; Kagan, J. Photochemical conversion of phenyl epoxycinnamate to flavonoids and the synthesis of 2'-hydroxyepoxychalcone. J. Org. Chem. 1970, 35, 2898-2900.
45. Saxena, S.; Makrandi, J. K.; Grover, S. K. Synthesis. 1985, 6973
46. Atassi, G.; Briet, P.; Berthelon, K. J.; Collonges, F. Eur. J. Med. Chem.1985, 20, 393.
47. Allan, J.; Robinson, R. J. Chem. Soc. 1924, 2192.
48. Baker, W. J. Chem. Soc. 1933, 1381.
49. Awad, W. I.; El-neweihy, M. F.; Selim, S. F. Studies on 3-Acylcatechols. II. A New Synthesis of 8-Hydroxyflavone. J. Org. Chem. 1960, 25, 1333-1336.
50. Maki, Y.; Shimada, K.; Sako, M.; Hirota, K. Photo-oxidative cyclisation of 2'-hydroxychalcones leading to flavones induced by heterocycle n-oxides : high efficiency of pybimido[54-g]pteridine n-oxide for the photochemical dehydrogenation . Tetrahedron, 1988, 44, 3187-3194.
51. Rastelli, G.; Costanino, L.; Albasini, A. Eur. J. Med. Chem. 1996, 31, 693.
52. Looker, J. H.; Edman, J. R.; Doppen, J. I. J. Heterocyclic. Chem. 1964,1141.
53. Lee, H. S.; Ko, H. R.; Ryu, S. Y.; Oh, W. K.; Kim, B. Y.; Ahn, S. C.;Mheem, T. I.;Ahn, J. S. Planta. Med. 1997, 63, 266.
54. Birnkmeier, E.; Geiger, H.; Zinsmeister, H. D. phytochemistry. 1999, 52,297.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top