跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/07 14:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭兆文
研究生(外文):Chao-Wen CHENG
論文名稱:奈米軟磁鐵氧體混成微米硬磁顆粒之磁物理特性量測分析
論文名稱(外文):Magnetic Properties of Nano-sized Ferrites and Micro-sized NdFeB Composites
指導教授:黃建華黃建華引用關係
指導教授(外文):Gain-Hwa HWANG
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:117
中文關鍵詞:軟硬磁
外文關鍵詞:wasp-waisted
相關次數:
  • 被引用被引用:2
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究的主要目的在於探討奈米軟磁鐵氧體混成微米硬磁顆粒製備而成的複合磁性材料其磁物理特性。根據以往文獻資料,在複合磁性材料中,特別是在混成製備的材料上,其磁滯曲線會呈現中間部分(外加磁場較低之處)較狹窄而兩旁(外加磁場較高之處)較為寬大的『蜂腰狀(wasp-waisted)』曲線。因此本研究希望透過上述軟硬磁複合磁材之磁滯曲線,來探討其軟硬磁晶粒間的交互作用。為了進行本研究,在樣品製備上係以燃燒合成法製備奈米級鎳鋅鐵氧體軟磁磁粉,並與市售微米級銣鐵硼硬磁磁粉加以均勻混合,最後壓製成軟硬磁複合之塊材,並經由震盪樣品磁性量測儀(VSM)對軟磁、硬磁與複合磁材加以量測以描繪出其磁滯曲線。進一步再以複合模型磁相疊加的特性,以考慮忽略軟硬磁晶粒間彼此交互作用的前提下,將軟磁與硬磁的磁滯曲線以線性疊加得到不同磁場強度下各材料的磁化強度以描繪出該複合模型的磁滯曲線,並發現磁相疊加與實際量測的磁滯曲線雖相近但仍有其差異,而其差異則係由於軟硬磁混合樣品中其晶粒間仍有交互作用之存在。本研究亦系統化地改變硬磁掺入複合磁材中的比例來對於其磁滯曲線的變化與軟硬磁晶粒間交互作用做一探討。
This aim of this thesis is to study the magnetic properties of composite material made of soft magnetic ferrites and hard magnetic NdFeB. In this study, the nano-sized ferrites were synthesized by combustion method, and then were mixed with micro-sized NdFeB. The ferrites/NdFeB composites were pressed into pellet for measuring the behavior of magnetization versus applied field (M-H) by a Vibration Samples Measurements. The M-H behavior has displayed a ferromagnetic hysteresis loop with a wasp-waisted shape, which constricted in the middle section, while wider at above and below section.
Further, various amount (1, 3, 5%)of NdFeB were mixed with Ni-Zn ferrites. The M-H behavior has shown markedly different coercivity and wasp-waisted hystsresis. Our works discuss the magnetic characteristics of wasp-waisted hysteresis loops and outline a rationale for this type of behavior by superposition of hard and soft magnetic phases. Because of the absence of magnetic interactions between particles, in measurement procedure, we could sum the magnetization mathematically of the isolated particles at each field value to create a composite hysteresis loops. These data show the disagreement between the curves is shown and it's small. The result may provide a understanding of interactions between particles could give rise to significant nonadditivity.
摘要
Abstract
總目錄
表目錄
圖目錄

第一章 序論
1-1 前言
1-2 文獻回顧
1-2-1 鐵氧磁體發展簡介
1-2-2 銣鐵硼稀土永磁材料發展簡介
1-3 燃燒合成法簡介
1-4 研究動機與目的

第二章 基礎理論
2-1 物質磁性的起源
2-2 磁性物質的分類
2-2-1 順磁性
2-2-2 反磁性
2-2-3 鐵磁性
2-2-4 反鐵磁性
2-2-5 陶鐵磁性
2-3 磁化曲線與磁滯曲線
2-3-1 磁化曲線
2-3-2 磁化過程與機制
2-3-3 磁滯曲線
2-3-4 軟磁與硬磁其磁滯曲線的特徵
2-4 常用的磁性材料
2-4-1 軟磁材料—鐵氧磁體
2-4-2 硬磁材料—銣鐵硼磁體
2-5 磁性材料晶粒間的交互作用

第三章 實驗方法與步驟
3-1 樣品製備
3-2 熱處理
3-3 軟硬磁樣品模型的建立
3-4 量測分析
3-4-1 X光繞射分析(結構鑑定)
3-4-2 震盪樣品磁性量測儀VSM量測(磁性量測)

第四章 結果與討論
4-1 燃燒法所得鐵氧磁體之熱處理
4-1-1 熱處理溫度對鐵氧磁體結晶結構的影響
4-1-2 熱處理溫度對鐵氧磁體磁物理性質的影響
4-1-3 熱處理時間對鐵氧磁體磁物理性質的影響
4-2 軟硬磁混合樣品系列之磁物理性質
4-2-1 軟硬磁混合樣品之X光繞射圖譜
4-2-2 軟硬磁混合樣品之磁滯曲線與磁化機制
4-2-3 軟硬磁混合樣品磁相疊加現象探討
4-2-4 軟硬磁混合樣品晶粒間之交互作用
4-3 熱處理溫度與軟硬磁混合樣品磁滯曲線之關係

第五章 結論

參考文獻
[1]張文成,”高性能稀土永久磁石之研究與發展”
物理雙月刊廿二卷六期,570頁,2000年12月。
[2]劉伊郎、陳恭,”氧化鐵薄膜 (Fe3O4) 與超晶格”
物理雙月刊廿二卷六期,592頁,2000年12月。
[3]金重勳,”磁性技術手冊”,中華民國磁性技術協會,2002年。
[4]C. Kittel”Introduction to Solid States Physics, 7th”,
JOHN WILEY & SON,INC (1996).
[5]Robert C. O’Handley”Modern Magnetic Materials-Principles and Application”, JOHN WILEY & SON,INC (1999).
[6]L. H. Bennet, and E. D. Torre, ”Analysis of wasp-waist hysteresis loops”, J. Appl. Phys. 97, 10E502 (2005).
[7]R. Swaminathan, M. E. McHenry, P. Podder, and
H. Srikanth, ”Magnetic properties of polydisperse and monodisperse NiZn ferrite nanoparticles interpreted in surface structure model”,
J. Appl. Phys. 97, 10G104 (2005).
[8]A. Moser, A. Berger, D. T. Margulies, and
E. E. Fullerton, ”Biquadratic coupling in antiferromagnetically coupled magnetic recording media”, J. Appl. Phys. 95, 6657 (2004).
[9]C. Upadhyay, H. C. Verma, and S. Anand, ”Cation distribution in nanosized Ni-Zn ferrites”, J. Appl. Phys. 95, 5746 (2004).
[10]E. Wajnberg, G. Cernicchiaro, and
Daric Motta de Souza Esquivel, ”Antennae: the strongest magnetic part of the migratory ant”, BioMetals. 17, 467 (2004).
[11]L. Y. Zhu, M. Itakura, Y. Tomokiyo, N. Kuwano, and
K. Machida, ”Corroded microstructure of HDDR-NdFeB magnetic powders”, J. Magn. Magn. Mat. 279, 353 (2004).
[12]D. Bueno-Baques, E. P. Hernandez, J. Matutes-Aquino,
S. M. Rezende, and D. R. Cornejo, ”Study of magnetization reversal in hybrid magnets”, J. Alloys and Compounds. 369, 158 (2004).
[13]R. Pugh, G. J. Tomka, R. Ireland, and O. Thomas, ”Interactions in bonded soft magnetic particle multilayers”, J. Magn. Magn. Mat. 272 (2004).
[14]V. M. Chakka, Z. S. Shan, and J. P. Liu, ”Effects of coupling strength on magnetic properties of exchange spring magnets”, J. Appl. Phys. 94, 6673 (2003).
[15]S. S. Yan, M. Elkawin, D. S. Li, H. Garmestani, J. P. Liu,
J. L. Weston, and G. Zangari, ”Soft/hard exchange-coupled layered structures with modulated exchange coupling”, J. Appl. Phys. 94, 4535 (2003).
[16]G. J. Bowden, J. M. L. Beaujour, A. A. Zhukov, B. D. Rainford,
P. A. J. de Groot, R. C. C. Ward, and M. R. Wells, ”Modeling the magnetic properties of DyFe2/YFe2 superlattices”, J. Appl. Phys. 93, 6480 (2003).
[17]Jing Li, Zhong Lin Wang, Hao Zeng, Shouheng Sun, and
J. Ping Liu, ”Interface structure in FePt/Fe3Pt hard-soft exchange-coupled magnetic nanocomposites”, Appl. Phys. Lett. 82, 3743 (2003).
[18]Amarendra K. Singh, T. C. Goel, and R. G. Mendiratta, ”Magnetic properties of Mn-Substituted Ni-Zn ferrites”, J. Appl. Phys. 92, 3872 (2002).
[19]S. T. Chui, and Y. L. Ma, ”Temperature dependence of the domain wall depinning in magnetic hard-soft composites”, J. Appl. Phys. 91, 9315 (2002).
[20]Y. Wu, K. Li, J. Qiu, Z. Guo, and G. Han, ”Antiferromagnetically coupled hard/Ru/soft layers and their applications in spin valves”, Appl. Phys. Lett. 80, 4413 (2002).
[21]D. T. Margulies, M. E. Schabes, W. McChesney, and
E. E. Fullerton, ”Interlayer coupling and magnetic reversal of antiferromagnetically coupled media”, Appl. Phys. Lett. 80, 91 (2002).
[22]B. Slusarek, and I. Dudzikowski, ”Application of permanent magnets made from NdFeB powder and from mixtures of powders in DC motors”, J. Magn. Magn. Mat. 239, 597 (2002).
[23]Q. Huang, J. Li, X. J. Huang, C. K. Ong, and X. S. Gao, ”Effect of magnetic coupling on the magnetoresistive properties in La0.67Sr0.33MnO3/BaFe11.3(ZnSn)0.7O19 composites”, J. Appl. Phys. 90, 2924 (2001).
[24]S. S. Yan, J. Du, J. L. Weston. G. Zangari, and
J. A. Barnard, ”Modulated magnetic properties of hard/soft exchange-coupled SmFe/NiFe multilayers”, J. Magn. Magn. Mat. 231, 241 (2001).
[25]K. Y. Wang, C. Frommen, Paul J. Schilling, N. Moelders, and
J. Tang, ”Evolution of magnetic phases upon annealing in glass-coated Fe-Ni-Cu microwires”, J. Magn. Magn. Mat. 226-230, 1970 (2001).
[26]Z. Li, and S. Zheng, ”Magnetization reversal of ferromagnetic/antiferromagnetic bilayers”, Appl. Phys. Lett. 77, 423 (2000).
[27]J. M. Gonzalez, M. I. Montero, P. Crespo, P. Marin, and
A. Hernando, ”Hystereris and relaxation of hard-soft nanocomposite samples”, J. Appl. Phys. 87, 4759 (2000).
[28]A. S. Edelstein, R. H. Kodama, M. Miller, V. Browning, P. Lubitz, and H. Sieber, ”Ferromagnetic/antiferromagnetic structures with ferromagnetic interlayer coupling”, J. Appl. Phys. 85, 5886 (1999).
[29]T. Tamura, K. Matsuura, H. Ashida, K. Kondo, and
S. Otani, ”Hysteresis variations of (Pb,La)(Zr,Ti)O3 capacitors baked in a hydrogen atomsphere”, Appl. Phys. Lett. 74, 3395 (1999).
[30]A. S. Edelstein, R. H. Kodama, M. Miller, V. Browning, P. Lubitz,
S. F. Cheng, and H. Sieber, ”Interlayer coupling and enhanced coercivity in ferromagnetic/antiferromagnetic structures”,
Appl. Phys. Lett. 74, 3872 (1999).
[31]J. S. Jiang, E. E. Fullerton, M. Grimsditch, C. H. Sowers, and
S. D. Bader, ”Exchange-spring behavior in epitaxial hard/soft magnetic bilaye film”, J. Appl. Phys. 83, 6238 (1998).
[32]M. Emura, A. C. Neiva, F. P. Missell, K. L. Babcock, J. Ormerod, and S. Constantinides, ”Magnetization processes in hybrid magnets”, J. Appl. Phys. 83, 7127 (1998).
[33]J. Schneider, and R. Knehans-Schmidt, ”Bonded hybrid magnets”,
J. Magn. Magn. Mat. 157/158, 27 (1996).
[34]P. Roberts, Yulong Cui, and Kenneth L. Verosub, ”Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems”,
J. Geophysical Research, 100, 17909 (1995).
[35]A. Vega, H. Dreysse, C. Demangeat, A. Chouairi, and
L. C. Balbas, ”Antiferromagnetic versus ferromagnetic coupling in Fe/Cr(107) and Cr/Fe(107)”, J. Appl. Phys. 76, 6989 (1994).
[36]P. Hejda, A. Kapicka, E. Petrovsky, and Bo. A. Sjoberg, ”Analysis of Hysteresis Curves of Samples with Magnetite and Hematite Grains”, IEEE Tran. Magn. 30, 881 (1994).
[37]K. O. Grady, M. EL-Hilo, and R. W. Chantrell, ”The Characterization of Interaction Effects in Fine Particle Systems”, IEEE Tran. Magn. 29, 2608 (1993).
[38]P. E. Kelly, K. O. Grady, P. I. Mayo, and
R. W. Chantrell, ”SWITCHING MECHANISMS IN COBALT-PHOSPHORUS THIN FILMS”, IEEE Tran. Magn. 25, 3881 (1989).
[39]Peter J. WASILEWSKI, ”MAGNETIC HTSTERESIS IN NATURAL MATERIALS”, Earth and Planetary Science Letters. 20, 67 (1973).
[40]C. P. Bean, ”Hysteresis Loops of Mixtures of Ferromagnetic Micropowders”, J. Appl. Phys. 26, 1381 (1955).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top