跳到主要內容

臺灣博碩士論文加值系統

(44.192.254.59) 您好!臺灣時間:2023/01/27 20:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭世昌
研究生(外文):Shih-Chang KUO
論文名稱:鍊狀末端基碳數對掌性鐵電液晶介電動力學及電光響應行為之影響(附錄:奈米磁動力學於生醫應用研究)
論文名稱(外文):The Influence of Terminal Chain on Dielectric Dynamics and Electro-Optical Response of Chiral Ferroelectric Liquid Crystals (Addendum:Application of Nano-Magneto-Dynamics for Bio-medical Diagnosis)
指導教授:傅昭銘傅昭銘引用關係
指導教授(外文):Chao-Ming FU
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:156
中文關鍵詞:鐵電性液晶自發極化值介電頻譜分子動力行為
相關次數:
  • 被引用被引用:1
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在探究不同鍊狀末端基碳數之掌性鐵電性液晶的介電動力學與電光應答特性之影響。為此目的,乃針對三組具有不同鍊狀末端基碳數(以C8、C9、C10表示)的掌性鐵電性液晶進行下述實驗量測以玆分析:(一)以液晶物性自動量測儀量測自發極化值(Ps)對溫度變化關係;(二)藉由LCR meter量測液晶分子之介電頻譜,並探討其在交變電磁場中的介電動力行為;(三)利用電光量測法量測樣品的應答特性。搭配Debye介電理論分析歸納上述實驗數據,探討改變鍊狀末端基碳數分子結構對液晶集體動力學行為與應答特性相關參數之變化。
由自發極化值的實驗量測歸納得到, C9的樣品具有最大的自發極化值;此外利用電光量測法並搭配應答時間對自發極化值之理論公式,亦可得C9的應答速度最快,因此可應證自發極化值與應答時間的相互關係。在高頻介電頻譜量測並以介電理論分析,得到液晶結構分子的交流電磁反應動力學行為作用之關係,且黏滯係數的量值對於Goldstone mode與Soft mode的介電強度、應答時間與驅動電壓有關聯。並發現C8在SmC*相存在低頻之Goldstone mode與高頻之Soft mode,其餘樣品僅在高頻區存在Soft mode;此外亦探討改變不同掌性末端基之分子結構對液晶樣品介電頻譜的差異。
This thesis aims to study the influence of different terminal chains on dielectric dynamics and electro-optical response of chiral ferroelectric liquid crystals (FLCs). The dielectric relaxation spectroscopy of FLCs were measured by LCR meters, The dielectric spectra were further analyzed in the framework of Debye dielectric theorem. The electro-optical response of the FLC samples was analyzed, to compare with the relation parameters of molecular dynamics and the spontaneous polarization characterized by Automated LC Property Tester.
The analyzed results of the spontaneous polarization measurements have shown that the spontaneous polarization of FLCs is correlated with the terminal chain molecular. While the measurement of electro-optical response has shown that the response time of FLC is correlated with spontaneous polarization and viscosity. According to the analysis in terms of the Debye theorem, the dielectric spectra are attributed to the Goldstone mode and Soft mode of molecular dynamics. The chiral terminal group has shown an effect on the collective dynamics and response time of liquid crystals. The results provide implication for electro-optical application utilizing ferroelectric liquid crystals.
目 錄
第一章 緒 論………………………………………………...…..1
1.1 液晶…………………….....……………………………………...1
1.1.1 前言…………………………..………..….……………………...1
1.1.2 液晶之沿革……………………………….……………………...2
1.1.3 液晶的分類……………………………….……………………...3
1.1.4 液晶的電光特性………………………….…………………...…9
1.2 鐵電性液晶………………………..…….…………….……….14
1.2.1 鐵電性液晶簡介………………………….…………………….14
1.2.2 鐵電性液晶的化學結構………………….…………………….15
1.2.3 鐵電性液晶的物理特性………………….…………………….16
1.2.4 表面穩定型鐵電性液晶………………….…………………….20
1.3 研究動機……..……………...……………….…………….…..21
第二章 基本理論…………………….…….……………...……..22
2.1 交變電場中的介電極化強度………….……..…………......22
2.2 Debye方程式…………………………….…………………..24
2.3 偶極子在介質中弛豫現象……………….………………….27
第三章 實驗儀器與方法…………..…………..………….…..30
3.1 三種掌性鐵電性液晶樣品…………………..…………..….32
3.2 實驗儀器………………………………….…………….….......34
3.3 實驗方法…………………………………….………………....35
3.3.1自發極化值(Ps)量測方法……………………………………..36
3.3.2介電頻譜量測方法……………………………………………..39
3.3.3電光學之應答特性量測方法…………………………………..40
第四章 結果與討論……………………….…………………....41
4.1 自發極化值(Ps) ……………...……………………….….........42
4.1.1 Sample A之自發極化值…………………………………….....43
4.1.2 Sample B之自發極化值……………..…………………...……46
4.1.3 Sample C之自發極化值…………………….………….……...48
4.1.4 三組掌性鐵電性液晶自發極化值之分析與比較…………......50
4.2 未加偏向電場之介電頻譜………………..………...……....53
4.2.1 Sample A未加偏向電場之介電頻譜………….………….…...54
4.2.2 Sample B未加偏向電場之介電頻譜………………………….70
4.2.3 Sample C未加偏向電場之介電頻譜……………………….....83
4.2.4 未加偏向電場之介電頻譜適配參數整理…………………..…96
4.2.5 不同掌性末端基樣品之動力行為比較………………………..98
4.3 偏向電場下之介電頻譜………………...……………….…102
4.3.1 Sample A外加偏向電場之介電頻譜…………….….………..103
4.3.2 Sample B外加偏向電場之介電頻譜…………………………104
4.3.3 Sample C外加偏向電場之介電頻譜………………..………..106
4.4 電光效應之響應特性量測………………………………... 108
4.4.1 Sample A光學應答時間……………………..………………..109
4.4.2 Sample B光學應答時間……………….…….……………..…110
4.4.3 Sample C光學應答時間………….…….……………..……....111
4.4.4 三組掌性鐵電性液晶光學應答時間之比較…………….…....112
第五章 結 論………………………………………………
[1]陳茂成,工業材料雜誌,2002年3月第183期,P94.
[2]Williams, R., U.S.Patent 3, 1962, 322, 273
[3]Heilmeier,G.H.,Zanoni, L.A.,and Barton, L.A., proc.IEEE, 1968, 56, 1162
[4]松本正一,角田市良合著, 劉瑞祥譯, 液晶之基礎與應用, 國 立編譯館出版,民國85年6月初版。
[5]Demus, D., Mol.Cryst.Liq.Cryst., 1988, 165, 45.
[6]D. Demus, and L. Richter, Textures of liquid crystals, Verlag Chemie, New York, 1978.
[7]G. W. Gray, and J. W. Goodby, Smectic Liquid Crystals : Textures and Structures, Blackie Press, Glasgow London, 1984.
[8]Friedel, G., Ann. Physique, 1922.273
[9]Fetgason, L. F., Scientific American, 1964, 211, 77.
[10]Fukuda, A., Takanishi, Y., Ishikawa, K., and Takezoe, H., J. Matter. Chem., 1994, 29, 4.
[11]Alberty, R. A., Physical Chemistry ., Chap.14, John Wiley& Son, N. Y., 1987.
[12]Blinov, L. M., and Chigrinov, V.G. ,,〝Electrooptic Effects in Liquid Crystal Materials 〞, Springer-Verlag, New York, 1994
[13]McMillian, W. L., Phys. Rev. A., 1973, 8, 1921.

[14]R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller., J. Phys. Lett. Paris., 1975, 36, 69.
[15]S. A. Pikin., and V. L. Indenbom., J. Phys., 1978, 50, 251.
[16]Jakli, I. Janossy, and L. Bata., Ferroelectric., 1988, 88, 73.
[17]B. Zeks, C. Filipic, and T. Carlsson., Phys. Scripta., 1989, T52, 362 .
[18]Goodby, J. W.,Ferroelectric Liquid Crystals:Principles, Properties, and Applications, Gordon and Breach Science Publishers, Philadelphia, 1991.
[19]Sawyer, C. B., Tower, C. H., Phy. Rev., 1930, 30, 369.
[20]Martinot-Lagarde, P., Duke, R., Durand, G., Mol. Cryst. Liq. Cryst., 1981, 75, 249.
[21]Miyasato, K., Abe, S., Takazoe, H., Fukuda, A., Kuze, E., Jap. J. Appl. Phys., 1983, 22, L661.
[22]Hoffman, J., Kuczynski. W., Molecki, J., Mol. Cryst. Liq. Cryst., 1978, 44, 287.
[23]Iwasaki, Y., Yoshiho, K., Uemoto, T. and Inuishi, Y., 1980, Jap. J.
Appl. Phys., 19, 2293.
[24]Clark, N. A. and Lagerwall, S. T., 1980, Appl. Phys. Lett., 36, 899.
[25]David, Cheng, K., Field and Wave Electromagnetics 2/e, Assison Wesley Longmanm, Taipei, 1996.
[26]Chelkowski, A., Dielectric Physics, Polish Scientific Publishers, New York, 1980.
[27]Cole, K. S., and Cole, R. H., J. Chem. Phys., 1941, 9, 341.
[28]K. Miyasato, Jpn. J. Appl. Phys., 1983, 22, L661.
[29]Ph. Martinot-Lagarde, J. Phys. Lett., 1977, 38, L17.

[30]K. Miyasato, E. Abe, H. Takezoe, A. Fukuda, and E. Kuze, Jpn. J. Appl. Phys., 1983, 22, L661.
[31]G. Spruce and R D. Pringle., J. Phys. E: Sci. Instrum. 1988 , 21, 268.
[32]G. Spruce and R.D. Pringle., Liq. Cryst. 1988, 3, 507.
[33]J.C. Anderson, Dielectrics, Oxford University Press, New York 1971.
[34]H. Diamant, K. Drenck, and R. Pepinsky R., Rev. Sci. Instrum.,1957 28, 30.
[35]Patel, J. S., Goodby, J. W., Chem. Phys. Lett., 1987, 137, 91.
[36]Yu. P. Panarin, O. Kalinovskaya, and J. K. Vij, Liq. Crystals, 1998, 25, 241.
[37]J.W. Goodby ed., Ferroelectric Liquid Crystals ., 1991, 193.
[38]Fukui, M., Orihara, H., Suzuki, A., Ishibashi, Y., Yamada, Y., Yamamoto, N., Mori, K.,Nakamura, K., Suzuki, Y., and Kawamura I., Jpn. J. Appl. Phys., 1990, 29, L329.
[39]Uehara H., Hanakai Y., Hatano J., Saito S., and Murashiro K., Jpn. J. Appl. Phys, 1995, 34, 5424.
[40]S. Sarmento, P. Simeão Carvalho, M. R. and Chaves, F. Pinto., Liq. Crystals., 2001, 28, 673.
[41]Gouda F., Skarp K., and Lagerwall S. T., Ferroelectrics, 1991, 113, 165.
[42]Yu. P. Panarin, O. Kalinovskaya, and J. K. Vij, Liq. Crystals, 1998, 25, 241.
[43]M. Buivydas, F. Gouda, G. Andersson, S. T. Lagerwall, and B. Stebler, Liq. Cryst., 1997, 23, 723.
[44]Hiraoka K., Takezoe H., and Fukuda A., Ferroelectrics, 1993, 147, 13.
[45]Hilier S., Pikin S. A., Haase W., Goodby J. W., and Nishiyama I., Jpn. J. Appl. Phys, 1994, 33, L1170.
[46]Moritake H., Uchiyama Y., Myojin K., Ozaki M., and Yoshino K., Ferroelectrics., 1993, 147, 53.
[47]Buivydas M., Gouda F., Lagerwall S. T., and Stebler B., Liq. Crystals., 1995, 18, 879.
[48]K. Yoshino, K. G. Balakrishnan, T. Uemoto, Y. Iwasaki, and Y. Inuishi., Jpn. J. Appl. Phys., 1978, 17, 597.
[49]K. Yoshino, M. Ozaki., Jpn. J. Appl. Phys., 1984, 23, L385.
[50]N. A. Clark, and S. T. Lagerwall., Appl. Phys. Lett., 1980, 36, 899.
[51]David A. Dunmur , Liquid crystals fundamentals, Singapore ; New Jersey : World Scientific, 2002.
[52]林堂煜, 掌性鐵電性液晶之高頻介電頻譜與外加磁場之影響, 國立高雄師範大學物理學系碩士論文, 民國94年7月
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top