跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/13 20:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭欣恬
研究生(外文):Hsin-Tien Cheng
論文名稱:教師e-Learning教學自我效能之研究
論文名稱(外文):A Study of Instructor's e-Learning Self-efficacy
指導教授:孫培真孫培真引用關係
指導教授(外文):Pei-Chen Sun
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:資訊教育研究所
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:101
中文關鍵詞:數位學習教師e-Learning教學自我效能社會認知理論
外文關鍵詞:e-Learninginstructor''s e-Learning self-efficacysocial cognitive theory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:752
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:13
e-Learning為近年來教育領域中廣泛被運用的一種新興的教學模式。然而,近年來卻發現在大專校院中,e-Learning推廣的歷程並不如預期中平順。主要的原因是在於多數的教師對於採用e-Learning教學的接受意願並不高。從教學者的角度來看,實行e-Learning的關鍵乃在於教師必須自我認知具備足夠使用e-Learning的能力去達成教學任務,如此才足以提高教師採用e-Learning的接受意願,進而順利地落實e-Learning於學校教學上。
基於此,本研究以社會認知理論 (social cognitive theory) 作為研究模式之基礎,探討教師e-Learning教學自我效能(instructor’s e-Learning self-efficacy) 的內涵,以及其相關因素對於教師e-Learning採用意願的影響。本研究採用結構方程模式 (structure equation modeling) 技術進行研究模式之驗證。研究對象是以台灣大專校院的教師為受測者,共發出1386份的網路問卷,有效回收問卷數為216份,回收率為15.6%。
整體而言,研究結果發現「教師e-Learning教學自我效能」的內涵為「e-Learning教學科技自我效能」、「e-Learning教學設計自我效能」和「e-Learning班級經營自我效能」等三個向度。「教師e-Learning教學自我效能」在教師對於採用e-Learning教學所預期的成效、預期的個人成就感與評價、採用e-Learning教學的情感態度與焦慮感,以及採用e-Learning教學的行為意願上,皆具有重要的影響力。對於研究結果,本文亦提出了討論與未來的研究方向。
Instructor’s e-Learning self-efficacy (IELSE), or the beliefs in instructor’s capabilities to organize and execute courses of e-Learning actions required to produce given attainments, is a potentially important construct to explain the instructors’ decisions of e-Learning adoption. 
Based on social cognitive theory (SCT), we discuss the traits and the role of instructors’ e-Learning self-efficacy in the determination of e-Learning adoption. A survey of a total of 216 instructors from different universities in Taiwan was conducted to develop and validate a measure of instructor e-Learning self-efficacy and to assess its impacts on the instructor’s decision process of e-Learning adoption, using the structural equation modeling techniques.
Overall, the structural equation modeling analysis indicated that three dimensions stand out: e-Learning instruction technology self-efficacy, e-Learning instruction design self-efficacy, and e-Learning class management self-efficacy. In addition, the results also found instructor’s e-Learning self-efficacy had a significant influence on instructors’ cognitive responses (i.e. outcome expectations), affective responses (i.e., affective attitude and anxiety), and instructors’ behavior intention of e-Learning adoption. Based on the results from this study, implications for research and practice, and future research were discussed.
謝 詞 I
摘 要 II
Abstract III
目 錄 IV
圖 次 VI
表 次 VII
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究流程與論文架構 4
第二章 文獻探討 7
第一節 e-Learning的定義與類型 7
第二節 e-Learning的特性與教師在e-Learning教學模式中的挑戰 8
第三節 社會認知理論 11
第四節 自我效能 12
第五節 教師e-Learning教學自我效能量表的發展 15
第三章 研究模式、變項與假設 19
第一節 研究模式 19
第二節 研究變項 22
第三節 研究假設 25
第四章 研究設計 33
第一節 研究對象 33
第二節 研究工具 34
第三節 量表的預試 39
第四節 資料蒐集 42
第五節 資料分析方法 43
第五章 資料分析 45
第一節 樣本基本資料描述與分析 45
第二節 教師e-Learning教學自我效能量表的驗證 46
第三節 研究假設與模式的驗證 56
第六章 結論與建議 67
第一節 研究結果討論 67
第二節 研究貢獻 69
第三節 未來研究方向 74
第四節 結論 76
參考文獻 77
壹、中文部分 77
貳、英文部分 77
附錄 83
附錄一:預試問卷 83
附錄二:正式問卷 88
附錄三:預試與正式問卷發送邀請函 94
附錄四:預試與正式問卷發送回饋意見 95
附錄五:SAS程式 97
壹、中文部分
田冠鈞(2004)。台灣高等教育發展數位學習的瓶頸與展望。教育研究月刊,125,17-26。
許孟祥、郭峰淵、林杏子、朱彩馨、游佳萍(2001)。個人資訊隱私倫理效能之量表的發展與驗證。中山管理評論,第九卷第三期,373-393。
郭生玉(2005)。心理與教育研究法,臺北縣:精華書局。


貳、英文部分
Bandura, A. (1977a). Self-efficacy: Toward a Unifying Theory of Behavioral Change. Psychological Review, 84(2), 191-215.
Bandura, A. (1977b). Cognitive Processes Mediating Behavioral Change. Journal of Personality and Social Psychology, 35(3), 125-139.
Bandura, A. (1982). Self-efficacy mechanism in human agency. American Psychologist, 37(2), 122-147.
Bandura, A. (1989). Human Agency in Social Cognitive Theory. American Psychologist, 44(9), 1175-1184.
Bandura, A. (1997). Self-efficacy: The Exercise of Control, Freeman, New York, NY.
Barbeite, F. G., and Weiss, E. M. (2004). Computer Self-efficacy and Anxiety Scales for an Internet Sample: Testing Measurement Equivalence of Existing Measures and Development of New Scales. Computers in Human Behavior, 20, 1-15.
Bell, M., Martin, G., and Clarke, T. (2004). Engaging in the future of e-learning: a scenarios-based approach. Education & Training, 46(7), 296-307.
Chou, C. (2003). Interactivity and Interactive Functions In Web-based Learning Systems: A Technical Framework for Designers. British Journal of Educational Technology, 34(3), 265-279.
Compeau, D. R., and Higgins, C. A. (1995a). Computer Self-Efficacy: Development of a Measure and Initial Test. MIS Quarterly, 19(2), 189-211.
Compeau, D. R., and Higgins, C. A. (1995b). Application of Social Cognitive Theory to Training for Computer Skills. Information Systems Research, 6(2), 118-143.
Compeau, D. R., Higgins, C. A., and Huff, S. (1999). Social Cognitive Theory and Individual Reactions to Computing Technology: a Longitudinal Study. MIS Quarterly, 23(2), 145-158.
Coppola, N. W., Hiltz, S. R., and Rotter, N. G.. (2002). Becoming a Virtual Professor: Pedagogical Roles and Asynchronous Learning Networks. Journal of Management Information Systems, 18(4), 169-189.
Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319-340.
Davis, F. D, Bagozzi R. P., and Warshaw P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 382-1003.
Dereshiwsky, M. I. (2001). ‘A’ is for Assessment: Identifying Online Assessment Practices and Perceptions. Education at
a Distance, 15(10). Retrieved from http://www.usdla.org/html/journal/JAN01_Issue/article02.html.
Dewald, N., Ann, S. C., Booth, A. and Levine, C. (2000). Information Literacy at a Distance Instructional Design Issues. The Journal of Academic Librarianship, 26(1), 33-44.
Eastin, M. S., and LaRose, R. (2000). Internet Self-Efficacy and the Psychology of the Digital Divide. Journal of Computer Mediated Communication, 6(1).
Fornell, C., and Larcker, D. F. (1981). Evaluating structural equation models with unobservable and measurement error. Journal of Marketing Research, 18, 39-50.
Fuller, D., Norby, R. F., Pearce, K., and Strand, S. (2000). Internet Teaching by Style: Profiling the On-line Professor. Educational Technology & Society, 3(2), 71-85.
Hsu, M. H., and Chiu, C. M. (2004). Internet Self-Efficacy and Electronic Service Acceptance. Decision Support Systems, 38, 369-381.
Huang, H. M., and Liaw, S. S. (2005). Exploring Users’ Attitudes and Intentions toward the Web as a Survey Tool. Computers in Human Behavior, 21, 729-743.
Huffaker, D. A., and Calvert, S. L. (2003). The New Science of Learning: Active Learning, Metacognition, and Transfer of Knowledge In E-learning Applications. Journal of Educational Computing Research, 29(3), 325-334.
Hung, S. Y., and Chang, C. M. (2005). User Acceptance of WAP Services: Test of Competing Theories. Computer standards & interfaces, 27, 359-370.
Igbaria, M., and Iivari, J. (1995). The Effects of Self-efficacy on Computer Usage. Omega, International Journal of Management Science. 23(6), 587-605.
Jung, I., Choi, S., Lim, C., and Leem, J. (2002). Effects of Different Types of Interaction on Learning Achievement, Satisfaction and Participation in Web-Based Instruction. Innovations in Education and Teaching International, 39(2), 153-162.
Leung, H. K. N. (2003). Evaluating the Effectiveness of e-Learning. Computer Science Education, 13(2), 123-136.
Luarn, P., and Lin, H. H. (2005). Toward an Understanding of the Behavioral Intention to Use Mobile Banking. Computers in Human Behavior, 21, 873-891.
Marsh, H. W., and Hocevar, D. (1985). Application of Confirmatory Factor Analysis to the Study of Self-concept: First and Higher Order Factor Models and Their Invariance Across Groups. Psychological Bulletin, 97(3), 562-582.
Mathieson, K., Peacock, E., and Chin, W. W. (2001). Extending the Technology Acceptance Model: The Influence of Perceived User Resource. Database of Advances in Information Systems, 32(3), 86-112.
McKimm, J., Jollie, C., and Cantillon, P. (2003). Web-based Learning. British Medical Journal, 326(19), 870-873.
McNeil, S. G., Robin, B. R., and Miller, R. M. (2000). Facilitating Interaction, Communication and Collaboration in Online Courses. Computers & Geosciences, 26, 699-708.
Michau, F., Gentil, S., and Barrault M. (2001). Expected Benefits of Web-based Learning for Engineering Education: Examples in Control Engineering. European Journal of Engineering Education, 26(2), 151-168.
Sabry, K., and Baldwin, L. (2003). Web-based Learning Interaction and Learning Styles. British Journal of Educational Technology, 34(4), 443-454.
Segars, A. H., and Grover, V. (1998). Strategic Information Systems Planning Success: An Investigation of the Construct and Its Measurement. MIS Quarterly, 22(2), 139-163.
Smith, S. M. (2000). Using the Social Cognitive Model to Explain Vocational Interest in Information Technology, Information Technology. Learning, and Performance Journal, 20(1), 1-9.
Subramanian, A., and Nilakanta, S. (1994). Research Measurement A blueprint for theory-building in MIS. Information & Management, 26, 13-20.
Taylor, S., and Todd, P. A. (1995). Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research, 6(2), 144-176.
Thornbory, G. (2003). E-learning: the Revolution. Occupational Health, 55(2), 23-25.
Triandis, H. C. (1980). Values, Attitudes, and Interpersonal Behavior, Nebraska Symposium on Motivation, University of Nebraska Press, Lincoln, NE.
Weil, M. M., and Rosen, L. D. (1995). The Psychological Impact of Technology From a Global Perspective: A Study of Technological Sophistication and Technophobia in University Students From Twenty-Three Countries. Computers in Human Behavior, 11(1), 95-133.
Winlner, A., and Lee, J. (2002). The promise and reality of distance education. Research Center Update, 8(3), 1-4.
Retrieved from http://www.nea.org/he/heupdate/vol8no3.pdf
Dereshiwsky, M. I. (2001). ‘A’ is for Assessment: Identifying Online Assessment Practices and Perceptions. Education at
a Distance, 15(10). Retrieved from http://www.usdla.org/html/journal/JAN01_Issue/article02.html
Wood, R., and Bandura, A. (1989). Impact of conceptions of ability on self-regulatory mechanisms and complex decision making. Journal of Personality and Social Psychology, 56(3), 407-415.
Yong, H. D., and Yoo, Y. (2004). It’s All about Attitude: Revisiting the Technology Acceptance Model. Decision Support Systems, 38, 19-31.
Zhang, D., and Nunamaker, J. F. (2003). Powering E-learning In the New Millennium: An Overview of E-learning and Enabling Technology. Information Systems Frontiers, 5(2), 207-218.
Zhang, D., Zhao, J. L., Zhou, L., and Nunmaker, J. F. (2004). Can E-learning Replace Classroom Learning? Communications of the ACM, 47(5), 75-79.
Zhang, D., and Zhou, L. (2003). Enhancing E-learning with Interactive Multimedia. Information Resources Management Journal, 16(4), 1-14.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top