(34.204.201.220) 您好!臺灣時間:2021/04/19 16:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:施秀雲
研究生(外文):Hsiu-Yun Shih
論文名稱:銅銀離子在供水系統模型中控制水生病原菌生長之研究
論文名稱(外文):Efficacy Of Copper-Silver Ionization in Eradicating Waterborne Pathogens in a Model
指導教授:林裕森林裕森引用關係
指導教授(外文):Yu-Sen E. Lin
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:環境教育研究所
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:49
中文關鍵詞:銅銀離子消毒法水生菌供水管路模型
外文關鍵詞:Pseudomonas aeruginosaStenotrophomonas maltophilia and nosocomial infectionmodel plumbing system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:430
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:130
  • 收藏至我的研究室書目清單書目收藏:2
存活在醫院供水系統的水生菌,可經由不同的傳播模式在醫院裡面散佈,引起院內感染的事件發生。目前醫院的院內感控措施,如探病民眾和病人多洗手、病人插管的器械之消毒和醫護人員穿著隔離衣等方法,都無法有效降低院內感染的發生,因為醫護人員與病患與受污染的水接觸是不可避免的,因此,能夠提供安全的用水給院內人員使用,就更顯得重要了。銅銀離子消毒法在歐美地區,廣泛地應用於醫療院所自來水供水系統中退伍軍人菌的消毒,而且有良好的殺菌效果。本研究率先利用銅銀離子消毒法進行綠膿桿菌(Pseudomonas aeruginosa)和嗜麥芽寡食單細菌(Stenotrophomonas maltophilia)之供水管路模型消毒研究,以了解銅銀離子對於這兩株水生菌的消毒效果,可提供醫院發生水生菌引起之院內感染時,作為供水系統消毒的方法之一。本研究結果顯示,銅銀離子在殺菌濃度為0.2/0.02、0.4/0.04 和0.8/0.08 mg/L,對於綠膿桿菌和嗜麥芽寡食單細菌分別作用3、6、12、24、48、72、96和120小時。綠膿桿菌在24小時的消毒期間,銅銀離子可將生物膜中的細菌達到去除99.9%的殺菌效果;對於水中的細菌量也可達到去除99.99%以上的殺菌效果。嗜麥芽寡食單細菌在24小時的消毒期間,銅銀離子可將生物膜中的細菌達到去除99%的殺菌效果;對於在水中的細菌量也可達到去除99.999%以上的殺菌效果。本研究證實銅銀離子消毒法,對綠膿桿菌和嗜麥芽寡食單細菌具有良好的消毒效果,應用銅銀離子消毒法於醫院自來水系統消毒時,不僅能有效控制退伍軍人菌生長,還能同時抑制綠膿桿菌和嗜麥芽寡食單細菌。
Respiratory tract infections caused by Pseudomonas aeruginosa and Stenotrophomonas maltophilia are two of the top 10 leading infections in intensive care units in Taiwan. Prevention of waterborne pathogen-associated nosocomial infections may be achieved by on-site disinfection of the hospital water system. Copper-silver ionization has been validated in peer review journals as one of the best available technology in eradicating Legionella pneumophila from the hospital water system. However, the efficacy of ionization in eradicating P. aeruginosa and S. maltophilia has never been investigated. The objective is to determine the efficacy of ionization in eradicating P. aeruginosa and S. maltophilia in biofilm and planktonic phases. Copper-silver ions concentrations at level of 0.2/0.02, 0.4/0.04 and 0.8/0.08 mg/L achieved significant reduction of both biofilm (>99.9% kill) and planktonic (>99.99%) associated P. aeruginosa within 24 hour of contact. Ions concentration of 0.8/0.08 mg/L can maintain more than 99.9% kill of P. aeruginosa for 120 hr in both phases. Copper-silver ions concentrations at level of 0.2/0.02, 0.4/0.04 and 0.8/0.08 mg/L achieved significant reduction of both biofilm (>99% kill) and planktonic (>99.999%) associated S. maltophilia within the 24 hour of contact. Ionization may have potential to eradicate P. aeruginosa and S. maltophilia in hospital water systems in addition to Legionella. Maintaining ion concentration in water can improve the efficacy of killing P. aeruginosa and S. maltophilia.
Table of Contents
謝誌……………………………………………………………………………………I
中文摘要…………………………………………………………………………… II
Abstract……………………………………………………………………………IV
Table of Contents………………………………………………………………VI
1.0 Introduction………………………………………………………………………1
1.1 Background…………………………………………………………………………1
1.2 Hypothesis…………………………………………………………………………3
1.3 Objective………………………………………………………………………… 3
2.0 Literature review………………………………………………………………4
2.1 Waterborne nosocomial infections……………………………………… 4
2.1.1 Nosocomial infection………………………………………………………… 4
2.1.2 Waterborne pathogens………………………………………………………… 5
2.1.3 Planktonic and biofilm phase………………………………………………6
2.2 Pseudomonas aeruginosa……………………………………………………… 7
2.2.1 Microbiology………………………………………………………………………7
2.2.2 Epidemiology and Infection outbreaks of P. aeruginosa……… 7
2.3 Stenotrophomonas maltophilia………………………………………………8
2.3.1 Microbiology………………………………………………………………………8
2.3.2 Epidemiology and infection outbreaks of S. maltophilia………9
2.4 Prevention strategies……………………………………………………… 10
2.4.1 Legionella pneumophila and Legionnaires’disease………………10
2.4.2 Copper-silver ionization……………………………………………………12
3.0 Materials and Methods……………………………………………………… 15
3.1 Plumbing model………………………………………………………………… 15
3.1.1 Optimal operating conditions…………………………………………… 15
3.2 Preparation of experiments……………………………………………… 16
3.2.1 System cleaning……………………………………………………………… 16
3.2.2 Stock of bacterial solution………………………………………………16
3.3 Measurement of copper and silver ions in the model plumbing system……17
3.4 System operation……………………………………………………………17
3.4.1 System monitoring…………………………………………………..17
3.4.1.1 Biofilm Sampling…………………………………………….18
3.4.1.2 Planktonic Sampling…………………………………………18
3.4.1.3 pH and Temperature Determination………………………….18
3.5 Chemicals for the model plumbing system studies…………………………19
3.5.1 Nutrient solution……………………………………………………..19
3.5.2 Inoculum……………………………………………………………..19
3.5.3 Disinfection………………………………………………………….19
4.0 Results……………………………………………………………………………21
4.1 Disinfection efficacy on Pseudomonas aeruginosa………………………...21
4.1.1 Disinfect efficacy on P. aeruginosa – Sub optimal conditions….......26
4.2 Disinfection result of S. maltophilia………………………………………..31
4.2.1 Disinfection efficacy on S. maltophilia- Sub optimal conditions…...36
5.0 Discussion………………………………………………………………………..41
6.0 Conclusion and Recommendation………………………………………………..44
List of Reference……………………………………………………………………..45


List of Figures
Fig.1. Mode of transmission……………………………………………………...……6
Fig.2. Disinfection Mechanism……………………………………………………....13
Fig.3. Model Plumbing System………………………………………………………20
Fig.4. Comparison of in the different copper-silver ions concentration to eradicated planktonic-associated P. aeruginosa…………………………………………………23
Fig.5. Comparison of in the different copper-silver ions concentration to eradicated biofilm-associated P. aeruginosa…………………………………………………….24
Fig.6. Variation of copper and silver ions was with P. aeruginosa………………......25
Fig.7. Comparison of in the different copper-silver ions concentration to eradicated planktonic-associated P. aeruginosa…………………………………………………28
Fig.8. Comparison of in the different copper-silver ions concentration to eradicated biofilm-associated P. aeruginosa…………………………………………………….29
Fig.9 Variation of copper and silver ions was with P. aeruginosa……………….......30
Fig.10. Comparison of in the different copper-silver ions concentration to eradicated planktonic-associated S. maltophilia…………………………………………………33
Fig.11. Comparison of in the different copper-silver ions concentration to eradicated biofilm-associated S. maltophilia…………………………………………………….34
Fig.12.Variation of copper and silver ions was with S. maltophilia……………….....35
Fig.13. Comparison of in the different copper-silver ions concentration to eradicated planktonic-associated S. maltophilia…………………………………………………38
Fig.14. Comparison of in the different copper-silver ions concentration to eradicated biofilm-associated S. maltophilia…………………………………………………….39
Fig.15.Variation of copper and silver ions was with S. maltophilia……………….....40

List of Tables
Table1. Nosocomial infections related to the hospital Tap water and water reservoirs……………………………………………………………………………14
List of Reference

1.Alyssa, C. T., Stout, J. E., Yu, V. L., Wagener, Y. M. “Comparison of culture methods for monitoring Legionella species in hospital potable water systems and recommendations for standardization of such methods”, Journal of Clinical Microbiology. Vol. 33(1995), pp. 2118-2123.

2.Anaissie, E. J., Penzak, S. R., Dignani, M. D. “The Hospital water supply as a source of nosocomial infections”, Arch Intern Med, Vol. 162 (2002), pp.1483-1492.

3.Ariza, J., Pujol, M. “Nosocomial antibiotic resistance in GNB at the ICUs” Clin Pulm Med. Vol. 11 (2) (2004), pp.71-83.

4.Atlas, R. M. “Legionella: from environmental habitats to disease pathology, detection and control”, Environmental Microbiology. Vol. 1 (4) (1999), pp.283-293.

5.Blanc, D. S., Carrara, Ph., Zanetti, G.., et al, “Water disinfection with ozone, copper and silver ions, and temperature increase to control Legionella: seven years of experience in a university teaching hospital”, Journal of Hospital Infection. Vol. 60(2005), pp. 69-72.

6.Borella, P., Montagna, M. T., Romano-Spica, V., et al, “Legionella infection risk from domestic hot water”, Emerging Infections Disease. Vol. 10 (3)(2004), pp.457-464.

7.Center for Disease Control, R.O.C. (Taiwan) http://203.65.72.42/iimhp/iimhp0000.asp, Access on June 1, 2006

8.Chen, Y. S., Liu, Y. C., Lee, S. J., et al, “Abbreviated duration of superheat-and- flush and disinfection of taps for Legionella disinfection: Lessons learned from failure”, American Journal of Infection Control. Vol. 33 (10) (2005), pp. 606-610.

9.Dettenkofer, M., Block, C. “Hospital disinfection: efficacy and safety issues”, Curr Opin Infect Dis. Vol. 18 (2005), pp.320-325.

10.Diederen, B.M.W., van Zwet, A. A., van der Zee, A.” Community-acquired pneumonia caused by Legionella pneumophila in a university hospital in Italy: efficacy of ultraviolet disinfection”, Journal of Hospital infection. Vol. 62(2006), pp. 494-501.

11.Drenkard, E.”Anticicrobial resistance of Pseudomonas aeruginosa biofilms”, Microbes and Infections. Vol. 5(2003), pp. 1213-1219.

12.Freije, M. R. “The word on water: New CDC guidelines recommend a proactive to Legionella”, Health faculties management” October 2004.

13.Goetz, A., Yu, V. L.” Copper-silver ionization: cautious optimism for Legionella disinfection and implications for environmental culturing”, American Journal of Infection Control. Vol. 25(6) (1997), pp.449-451.

14.Goss, C. H., Mayer-Hamblett, N. M., Aitken, M. L., et al,” Association between Stenotrophomonas maltophilia and lung function in cystic fibrosis”, Thorax. Vol. 59(2004), pp. 955-959.

15.Hauser, A. R., Cobb, E., BodÍ, M. et al, “Type III protein is associated with poor clinical outcomes in patients with ventilator-associated pneumonia caused by Pseudomonas aeruginosa”, Crit Care Med. (2002) Vol. 30, pp. 521-528.

16.Hiøiby, N., Johansen, H. K., Moser, C., et al,”Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth”, Microbes and Infection. Vol. 3(2001), pp. 23-35.

17.Hsueh, P. R., Chen, M. L., Sun, C.C., et al, “Antimicrobial drug resistance in pathogens causing nosocomial infections at a university hospital in Taiwan, 1981-1999”, Emerging Infection Disease. Vol. 8(2002), pp. 63-68.

18.Hsueh, P. R., Teng L. J., Yang, P. C., et al “Nosocomial pseudoepidemic caused by bacillus cereus traced to contaminated ethyl alcohol from a liquor factory“, Journal of Clinical Microbiology. Vol. 37(1999), pp. 2280-2284.

19.Korvick, J., Yu, V. L., Fang, G. D. “The role of Legionella species in nosocomial pneumonia”, Semin Respir Infect., Vol. 2 (1987, pp.34-37.

20.Lanotee, P. Cantagrel, S., Mereghetti, L., et al, “Spread of Stenotrophomonas maltophilia colonization in a pediatric intensive care unit detected by monitoring tracheal bacterial carriage and molecular typing”, Clin Microbiol Infect. Vol. 9(2003), pp. 1142-1147.

21.Lin, Y. E., Stout, J. E., Yu, V. L. et al, “Disinfection of water distribution systems for Legionella” Seminars in Respiratory Infections. Vol. 13 (1998), pp.147-159.

22.Lin, Y.E., Vidic, R. D., Stout, J. E., et al, “Individual and combined effects of copper and silver ions on inactivation of Legionella pneumophila” Water Res. Vol. 30 (1996), pp.1905-1913.

23.Lyczak, J. B., Cannon, C. L., Pier, G. B. “Establishment of Pseudomonas aeruginosa infection: lessons from a versatile opportunist”, Microbes and Infection. Vol. 2 (2000), pp. 1051-1060.

24.Merlani, G. M., Francioli, P.”Established and emerging waterborne nosocomial infections”, Curr Opin Infect Dis. Vol.16 (2003), pp.343-347.

25.Miuetzner, S., Schwille, R. C., Farley, A., et al, “Efficacy of thermal treatment and copper-silver ionization for controlling Legionella pneumophila in high-volume hot water plumbing system in hospitals”, American Journal of Infection Control. Vol. 25(6)(1997), pp.452-457.

26.Muraca, P. W., Yu V., Geotz, A. “Disinfection of water distribution system for Legionella: A review of application procedures and methologies” Infection Control Hospital Epidemiology, Vol. 11 (2) (1990), pp. 79-88.

27.Muraca, P., Stout, J. E., Yu, V. L. “Comparative assessment of chlorine, heat, ozone, and ultraviolet light for killing Legionella pneumophila Within a model plumbing system”, Applied and Environmental Microbiology, Vol. 53 (1987), pp.447-453.

28.Reuter, S., Sigge, A., Wiedeck, H., et al, “Analysis of transmission pathways of Pseudomonas aeruginosa between patients and tap water outlets”, Crit Care Med. (2002) Vol. 30, pp. 2222-2228.

29.Sabria, M., Yu, V. L.”Hospital-acquired legionellosis: solutions for a preventable infection”, The Lancet Infections Diseases. Vol. 2(2002), pp. 368-373.

30.Sakhnini, E., Weissmann, A., Oren, I.,“Fluminant Stenotrophomonas maltophilia soft tissue infection in immunocompromised patients: An Outbreak transmitted via tap water”, The American Journal of the Medical Sciences. Vol.323 (5) (2002), pp.269-272.

31.Stout, J. E., Yu, V. L. “Legionellosis” The New England Journal of Medicine”, Sep 4 (1997), pp. 682-686.

32.Tobin, J., Swann, R., and Bartett, C., “Isolation of L. pneumonia from water system”, British Medical Journal, Vol. 282 (1981), pp.515-517.

33.Trouillet, J. L., Vuagnat, A., Combes, A., et al, “Pseudomonas aeruginosa ventilator-associated pneumonia: comparison of episodes due to piperacillin-resistant versus piperacillin-susceptible organisms”, Clinical Infections Diseases. Vol. 34(2002), pp. 1047-1054.

34.Uzel, A., Ucar, F., Hames-Kocabas, E. E.”Prevalence of Legionella pneumophila serogroup 1 in water distribution systems in İzmir province of Turkey”, APMIS. Vol. 113 (2005), pp. 664-669.

35.Valdezate, S., Vindel, A., Martín-Dávila, P., et al, “High genetic diversity among Stenotrophomonas maltophilia strains despite their originating at a single hospital“Journal of Clinical Microbiology. Vol. 42(2004), pp. 693-699.

36.Wadowsky, R. M., Yee, R. B., Mezmar, L. et al, “Hot water system as sources of Legionella pneumophila in hospital and non-hospital plumbing fixtures”, Applied and Environmental Microbiology, Vol. 43 (1982), pp.1104-1110.

37.Wang, W. S., Liu, C. P., Lee, C. M., Huang, F. Y. “Stenotrophomonas maltophilia bacteremia in adults: four years’ experience in a medical center in northern Taiwan”, Journal Microbiol Immunol Infect. Vol.37 (2004), pp.359-365.


38.Water-Technology.net, http://www.water-technology.net/contractors/disinfection/cavion/cavion3.html, Access on June 18, 2006

39.Wu, P.S., Lu, C. Y., Chang, L. Y., et al, “Stenotrophomonas maltophilia bacteremia in pediatric patients- a 10-year analysis”, Journal Microbiol Immunol Infect. Vol.39 (2006), pp.144-149.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 29. 黃光國(1995)“心理學本土化運動中的世界觀:論「以牛刀切頭髮」”,本土心理學研究,第4期,頁380–413。
2. 26. 莊翰華、吳郁萍(2000)“社區總體營造之闡釋”,社區發展季刊,第90期,頁170–181。
3. 3. 池永歆(1998)“空間、地方與鄉土:以東勢大茅埔為例的詮釋”,地理教育,第24期,頁53–66。
4. 18. 簡文吟(2004)“台灣已婚婦女勞動再參與行為的變遷”,人口學刊,第28期,頁1–47。
5. 13. 林瑞欽(1995)“「社區意識」凝聚之道”,社會福利,第118期,頁8–17。
6. 12. 林振春(1994)“如何凝聚社區意識、整建社區社會”,理論與政策,第32期,頁117-129。
7. 7. 李永展(1995)“社區環境權與社區發展”,社區發展季刊,第90期,頁53–61。
8. 38. 曾肅良(2003)“文化圖騰、本土意識與社區總體營造的迷思”,美育,第131期,頁50–55。
9. 45. 賴宗裕(1998)“民眾參與都市建設事務之意義與限制”,人與地,第173期,頁21–65。
10. 49. 薛雅惠(2004)“所在地﹙place﹚與在地性﹙placeness﹚概念的鄉土教學設計”,國民教育,第44卷6期,頁12-18。
11. 51. 謝宏昌、鄧文慧(1999)〝論都市計劃過程中民眾利益組成與位置改變:由高雄市內惟埤文化園區特定區計畫剖析民參與的本質〞,成功大學學報,第34卷人文.社會篇,頁61–80。
 
系統版面圖檔 系統版面圖檔