跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/10 09:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡雪麗
研究生(外文):TSAI, HSUEH-LI
論文名稱:具學習之經濟生產批量模式之研究
論文名稱(外文):A Study on Economic Production Quantity Models with Learning Effect
指導教授:蔡登茂蔡登茂引用關係
指導教授(外文):TSAI, DENG-MAW
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:工業管理系
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:103
中文關鍵詞:不完美品質學習效果經濟生產批量
外文關鍵詞:imperfect qualitylearning effecteconomic production quantity
相關次數:
  • 被引用被引用:7
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統經濟生產批量模式假設產品的生產是完美的且生產率是固定的。然而在實際的生產作業中,常因生產製程的可靠度問題,使得產品的生產品質很難完美而無不良品發生。此外,在某些環境下,生產過程會產生學習效果,每單位產品所需的生產時間會因重覆生產的次數增加而遞減。因此,本研究進行學習與不完美生產製程對經濟生產批量問題影響之探討並假設產品生產的不良率順從某一機率分配之隨機變數。進行數學模式之推導,並發展求得最佳經濟生產批量模式的方法。本研究所提之存貨模式具一般化,對企業在決定最佳生產批量問題提供更大的協助與決策之參考。同時本研究也對重要參數進行深入的敏感度分析,使企業能更深入瞭解各項參數變動時,對最佳經濟生產批量及每單位時間之期望總成本所造成的影響,進而作為生產決策之參考。
The classical economic production quantity (EPQ) model assumes that items produced are of perfect quality and that the production rate is constant. However, in realistic situations, product quality is never perfect, and is directly affected by the reliability of the production processes. In addition, under certain circumstances, the time required to produce a product declined at a decreasing rate as experience with the repetitive task increased. In this study, the effects of learning and imperfect production processes on the economic production quantity problem are presented. The percentage of imperfect quality items is considered to be a random variable with probability density function. A mathematical model is developed and its related procedure is provided to find the optimal economic production quantity. In addition, a numerical example is given to illustrate the developed model. Sensitivity analysis is also performed and discussed.
摘要............................................................I
Abstract........................................................II
誌謝.............................................................III
目錄.............................................................IV
圖目錄............................................................VIII
表目錄.............................................................X
1. 緒論.............................................................1
1.1 研究背景與動機....................................................1
1.2 研究範圍與限制....................................................4
1.3 研究方法與架構..................................................5
2. 文獻探討.........................................................8
2.1 傳統存貨生產系統.................................................8
2.2 不完美存貨生產系統...............................................12
2.3 不良品重制生產系統批量模式.......................................16
2.4 生產系統具學習效果...............................................19
2.5 小結...........................................................24
3. 不良品全部報廢之經濟生產批量模式...................................27
3.1 符號定義.......................................................27
3.2 存貨成本模式建構.................................................29
3.3 數值範例說明...................................................34
3.4 敏感度分析.....................................................40
3.4.1 不同設置成本與儲存成本比值在不同期望不良率下對
Q*及E[TCU(Q*)]影響之敏感度分析.................................40
3.4.2 不同設置成本與人工成本比值在不同期望不良率下對
Q*及E[TCU(Q*)]影響之敏感度分析.................................41
3.4.3 不同學習率在不同期望不良率下對Q*及E[TCU(Q*)]
影響之敏感度分析............................................44
3.4.4 不同學習率下對單位產量變動影響之敏感度分析….................….45
3.4.5 貝他分配下不同參數值對Q*及E[TCU(Q*)]影響之敏感度分析............47

3.5 小結..........................................................51
4. 不良品重工修復之經濟生產批量模式...................................52
4.1 符號定義.......................................................52
4.2 存貨成本模式之建構...............................................53
4.3 數值範例說明....................................................60
4.4 敏感度分析......................................................63

4.4.1 不同設置成本與人工成本比值在不同期望不良率下對
Q*及E[TCU(Q*)]影響之敏感度分析................................63
4.4.2 不同設置成本與儲存成本比值在不同學習率下對Q*及E[TCU(Q*)]影響
之敏感度分析.................................................66
4.4.3 不同設置成本與人工成本比值在不同學習率下對Q*及E[TCU(Q*)]影響
之敏感度分析..................................................68
4.5 小結............................................................70
5. 產品具退化性之經濟生產批量模式......................................71
5.1 符號定義........................................................71
5.2 存貨模式之建構...................................................71
5.3 數值範例說明.....................................................79
5.4 敏感度分析.......................................................81
5.4.1 不同設置成本與儲存成本比值在不同退化率下對Q*及E[TCU(Q*)]影響
之敏感度分析..................................................81
5.4.2 不同設置成本與人工成本比值在不同退化率下對Q*及E[TCU(Q*)]影響之
敏感度分析....................................................83
5.5 小結............................................................85
6. 結論與建議........................................................86
6.1 結論............................................................86
6.2 未來研究方向與建議................................................88
參考文獻...........................................................90
作者簡介...........................................................103
中文部份:
董青雲,具瑕疵品與同質重製工作二階段生產系統之最佳經濟批量研究,碩士論文,國立成功大學工業管理研究所,(1998)。
鄭家昌,不可靠生產系統之經濟批量模式-考慮瑕疵品及重製製程,
碩士論文,國立成功大學工業管理研究所,(2002)。
蔡依齡,允許部分欠撥下不完美生產系統之經濟批量,碩士論文,真
理大學管理科學研究所,(2003)。

英文部份:
Adler, P. S. and Clark, K. B., “Behind the learning curve: a sketch of the learning process,” Management Science, Vol.37, pp.267-281 (1991).
Agnihothri, S. R. and Kenett, R. S., “The impact of defects on a process with rework,” European journal of operational research, Vol. 80, No.2, pp. 308-327 (1995).
Badiru, A. B., “Multivariate analysis of the effect of learning and forgetting on learning process,” Management Science, Vol.37, pp.261-281 (1995).
Ben-Daya, M. and Hariga, M., “Economic lot scheduling problem with imperfect production processes,” Journal of Operational Research Society,
Vol.51, pp. 875-881 (2000).
Ben-Daya, M. and Raouf, A., “Inventory models involving lead time as a decision variable,” Journal of the Operational Research Society, Vol.45, 579-582 (1994).
Bose, A., Goswami, K. and Chaudhuri, S., “An EOQ model for deteriorating items with linear time-dependent demand rate and shortages under inflation and time discounting,” Journal of the Operational Research Society, Vol.46, pp.927 -982 (1995).
Buzacott, J. A., “Economic order quantities with inflation,” Operational Research Quarterly, Vol.26, No.3, pp.553-558 (1975).
Carlson, J. G. H., “Cubic learning curves: precision tool for labor estimating,” Manufacturing Engrg. and mgmt., Vol.67, No. 11, pp.22-25 (1973).
Chand, S., “Lot sizes and setup frequency with learning in setups and process quality,” European Journal of Operational Research, Vol.42, No.2, pp.190-202 (1989).
Chang, H. J. and Dye, C. Y., “A EOQ model for deteriorating items with time varying demand and partial backlogging,” Journal of the Operational Research Society, Vol.50, No.11, pp.1176-1182 (1999).
Chang, H. K. and Yushin, H., “An optimal production run length in deteriorating production processes,” International Journal of Production Economics, Vol.58, pp.183-189 (1999).
Chen, J. M., “An inventory model for deteriorating items with time-proportional demand and shortahes under inflation and time discounting,” International Journal of Production Economics, Vol.55, No.1, pp.21-30 (1998).
Cheng, T. C. E., “An economic order quantity model with demand dependent
unit production cost and imperfect production process,” IIE Transactions,
Vol.23, pp.23-28 (1991).
Chern, C. C. and Yang, P., “Determining a threshold control policy for an imperfect production system with rework jobs,” Naval Research Logistics, Vol.46, pp.273-301 (1999).
Chiu, S. W. and Gong, D. C., “Determining the optimal lot size for the finite production model with an imperfect rework process of defective items,” Journal of Information and Optimization Science, Vol.25, No.1, pp.105-119 (2003).
Chung, K. J. and Hou, K. L., “An optimal production run time with imperfect production process and allowable shortages,” Computers and Operations Research, Vol.30, pp.483-490 (2003).
Cohen, M. A., “Joint pricing and ordering policy for exponentially decaying inventory with know demand,” Naval Research Logistics Quarterly, Vol.24, pp.257-268 (1977).
Covert, R. P. and Philip, G. C., “An EOQ model for items with Weibull distribution deterioration,” AIIE Transactions, Vol.5, pp.323-326 (1973).
Deb, M. and Chaudhuri, K. S., “A note on the heuristic for replenishment of trended inventories considering shortages,” Journal of The Operational Research Society, Vol.38, No.5, pp.459-463 (1987).
Dejong, J. R., “The effects of increasing skill on cycle time and its
consequencesfor time standards,” Ergonomics, pp.51-60 (1957).
Donaldson, W. A., “Inventory Replenishment Policy for A Linear Trend In Demand-An Analytical Solution,” Journal of The Operational Research Society, Vol.28, No.3, pp.663-670 (1977).
Elmaghraby, S. E., “Economic manufacturing quantities under conditions of learning and forgetting,” Production Planning and Control, Vol.1, No. 4, pp.196-208 (1990).
Fisk, J. C. and BALLOU, D. P., “Production Lot Sizing under a Learning Effect,” IIE Transactions, Vol.14, No.4, pp.257-264 (1982).
Ghare, P. M. and Schrader, G. F., “A model for exponential decaying inventory,” Journal of Industrial Engineering, Vol.14, 238-243 (1963).
Glover, J. H., “Manufacturing progress functions:An alternative model and its comparison with existing functions,” Int. J. Production Research, Vol.4, No.4, pp279-300 (1966).
Groenevelt, H., Pintelon, L. and Seidmann, A., “Production lot sizing with machine breakdowns,” Management Science Vol.38, pp.104-123 (1992a).
Groenevelt, H., Pintelon, L. and Seidmann, A., “Production batching with machine breakdowns and safety stocks,” Operations Research Vol.40, pp. 959-971 (1992b).
Harris, F. W., “How Many Parts to Make at Once Factory,” The Magazine of Management, Vol.152, No.10, pp.135-136 (1913).
Jaber, M. U. and Bonney, M., “Lot sizing with learning and forgetting in set-ups and in product quality,” Production Economics, Vol.83, pp.95-111 (2003).
Jaber, M. Y. and Bonney, M., “Production breaks and the learning curve: the forgetting phenomenon,” Applied Mathematical Modelling, Vol.20, No.2, pp.162-169 (1996).
Jaber, M. Y. and Bonney, M., “The economic manufacture/order (EMQ/EOQ) and the learning curve: past, present, and future,” International Journal of Production Economics, Vol.59, No.1, pp.93-102 (1999).
Jaber, M. Y. and Bonney, M., “Lot sizing with learning and forgetting in set-ups and in product quality,” International Journal of Production Economic, Vol.83, pp.95-111 (2003).
Jaber, M. Y. and Guiffrida, A. L., “Learning curves for process generating defects requiring reworks,” European Journal of Operational Research, Vol.159, pp.663-672 (2004).
Jamal, A. M. M., Sarker, B. R. and Mondal, S., “Optimal manufacturing batch size with rework process at a single-stage production system,” Computers and Industrial Engineering, Vol.47, pp.77-89 (2004).
Jensen, P. A., Pakath, R. and Wilson, J. R., “Optimal buffer inventories for multistage production systems with failures,” European Journal of Operational Research, Vol.51, pp.313-326 (1991).
Kechie, E. C. and Fontana, R. J., “Effects of learning on optimal lot size,” Management Science, Vol.13, No.2, pp.102-108 (1966).
Kimemia, J. and Gershwin, S. B., “An algorithm for the computer comtrol of a flexible manufacturing system,” IIE Transcations, Vol.15, pp.353-362 (1983).
Kini, R. G., “Economics of Conformance Quality,” Unpublished Ph. D. Dissertation, G. S. I. A., Carnegie Mellon University (1994).
Klein, M., “Markovian decision models for reject allowance problems,” Management Science Vol. 12, 349-358(1966).
Ladany, S. and Sternlieb, A., “The interaction of economic ordering quantities and marketing policies,” AIIE Transactions, Vol.6, pp.35-40 (1974).
Layek, L. A. M. and Roberto, M., “On the multi-product newsboy problem with two constraints,” The computer and operations research, Vol.32, pp.2095-2116 (2005).
Lee, H. H., “A cost/benefit model for investments in inventory and preventive maintenance in an imperfect production system,” Computer and Industrial Engineering, Vol.48, pp.55-68 (2005).
Lee, H. L., “Lot sizing to reduce capacity utilization in a production process
with defective items, process corrections, and rework,” Management
Science, Vol.38, pp.1314-1328 (1992).
Levitan, R. E., “The optimum reject allowance problem,” Management Science, Vol.6, pp.172-186 (1960).
Li, C. L. and Cheng, T. C. E., “An economic production quantity model with learning and forgetting considerations,” Production and Operations Management, Vol.3, No.2, pp.118-132 (1994).
Li, G. and Rajagopalan, S.,“The impact of quality on learning,” Journal of Operations Management, Vol,15, pp.181-191 (1997).
Lin, C. S., Chen, C. H. and Kroll, D. E., “Integrated production-inventory models for imperfect production processes under inspection schedules,” Computers and Industrial Engineering, Vol.44, pp.633-650 (2003).
Lin, T. M., Tseng, S. T. and Liou, M. J., “Optimal inspection schedule in the imperfect production system under general shift distribution,” Journal of the Chinese Institute of Industrial Engineers, Vol.8, No.2, pp.73-81 (1991).
Liu, J. J. and Yang, P., “Optimal lot-sizing in an imperfect production system with homogeneous reworkable jobs,” European journal of operational research, Vol.91, pp.517-527 (1996).
Makis, V., “Optimal lot sizing and inspection policy for an EMQ model with imperfect inspections,” Naval Research Logistics, Vol.45, pp.165-186 (1998).
Moon, I. and Choi, S., “A note on lead time and distributional assumptions in continuous review inventory models,”Computers Operations Res., Vol.25, pp.1007-1012 (1998).
Muth, E. J. and Spremann, K., “Learning effects in economic lot sizing,” Management Science, Vol.29, No.2, pp.264-269 (1983).
Nahmias, S., “Production and operations analysis,” McGraw-Hill, fourth edition(2001).
Ougang, L. Y. and Chang, H. C., “EMQ model with variable lead time and Imperfect production process,” Information and management sciences, Vol.11, No.1, pp.1-10 (2000).
Ouyang, L. Y., Chang, H. C. and Chen, C. K., “Quality improvement, setup cost and lead-time reductions in lot size reorder point models with an imperfect production process,” Computers and Operations Research, Vol.29, pp.1701 –1717 (2002).
Ouyang, L. Y. and Wu, K. S., “Mixture inventory model involving variable lead time with a service level constraint,” Computers and Operations Research, Vol.24, 875-882 (1997).
Ouyang, L. Y., Yeh, N. C. and Wu, K. S., “Mixture inventory model with backorders and lost sales for variable lead time,” Journal of the Operational Research Society, Vol.47, pp.829-832 (1996).
Paknejad, M. J., Nasri, F. and Affisco, J. F., “Defective unit in continuous review (S,Q) system,” International Journal of Production Research, Vol.33, No.10, pp.2767-2777 (1995).
Papachristos, S. and Skouri, K., “An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging,” International Journal of Production Economics, Vol.83, pp.247-256 (2003).
Pascale, H. A. and Moueen, S. K.,“Production lot sizing with the reworking of imperfect quality items produced,” Production planning and control, Vol.12, No 6, pp.584-590 (2001).
Pegels, C. C., “On Startup or learning curves:An expanded view,” AIIE Trans., Vol.1, No.3, pp.216-222 (1969).
Porteus, E. L., “Optimal lot sizing, process quality improvement and setup cost reduction,” Operations Research, Vol.34, pp.137-144 (1986).
Rachamadugu, R. and Tan, C. L., “Policies for lot sizing with setup learning,”
International Journal of Production Economics, Vol.48,pp.157-165.
(1997).
Rosenberg, D., “Optimal price-inventory decisions profit vs ROII,” IIE Transactions, Vol.23, pp.17-22 (1991).
Rosenblatt, M. J. and Lee, H. L., “Improving profitability with quantity discounts under fixed demand,” IIE Transactions, Vol.17, pp.388-395 (1985).
Rosenblatt, M. J. and Lee, H. L., “Economic production cycles with imperfect production processes,” IIE Transactions, Vol.18, pp.48-55(1987).
Salameh, M. K. and Jaber, M. Y., “Economic production quantity model for items with imperfect quality,” International Journal of Production Economics, Vol.64, pp.59–64 (2000).
Sarker, B. R., Jammal, A. M. M. and Wang, S., “Supply chain models for perishable products under inflation and permissible delay in payment,” Computers and Operations Research, Vol.27, pp. 59-75 (2000).
Shih, W., “Optimal inventory policies when stockouts result from defective products,” International Journal of Production Research, Vol. 18, No.6, pp.677–686 (1980).
Silver, E. A., Pyke, D. F. and Peterson, R., Inventory Management and Production Planning and Scheduling, 3th ed. New York: John Wiley (1998).
Smunt, T. L. and Morton, T. E., “The effects of learning on optimal lot
sizes: further development on the single product case,” IIE
Transactions, Vol.17, pp.33-37(1985).
Spradlin, B. and Pierce, D., “Production scheduling under a learning effect by dynamic programming,” Journal of Industrial Engineering, Vol.18, No.3, pp.219-222 (1967).
Steedman, I., “Some Improvement Curve Theory,” International Journal
of Production Research, Vol.8, pp.189-205 (1970).
Teng, J. T. and Chang, C. T., “Economic production quantity models for deteriorating items with price and stock-dependent demand,” Computers and Operations Research, Vol.32, pp.297-308 (2005).
Tseng, S. T., “Optimal preventive maintenance policy for deteriorating production systems,” IIE Transactions, Vol.28, pp.687-694 (1996).
Wang, C. H. and Sheu, S. H., “Simultaneous determination of the optimal production-inventory and product inspection policies for a deteriorating production system,” Computers and Operations Research, Vol.28, pp.1093-1110 (2001).
Wee, H. M., “A deterministic lot-size inventory model for deteriorating items with shortages and a declining market,” Computers and Operations Research, Vol.22, No.3, pp.345-356 (1995).
White, L. S., “Bayes Markovian decision models for a multi-period reject allowance problem,” Operations Research Vol.15, pp.857-865 (1967).
Wright, T., “Factors Affecting the Cost of Airplanes,” Journal of Aeronautical Science, Vol.4, No.4, pp.122-128 (1936).
Yang, P. C. and Wee, H. M., “Economic ordering policy of deteriorated item for vendor and buyer: an integrated approach,” Production planning and control, Vol.11, pp.474-480 (2000).
Yelle, L. E., “Estimating learning curves for potential products,” Industrial Marketing Management, Vol.5, nos.2/3, pp.147-154 (1976).
Zhang, X. and Gerchak, Y., “Joint lot sizing and inspection policy in and EOQ model with random yield,” IIE Transactions, Vol.22, pp.41 (1990).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top