跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪嘉文
研究生(外文):Chia-Wen Hung
論文名稱:白蝦轉醯胺酵素cDNA分子選殖與外在因子對其轉錄之影響
論文名稱(外文):Molecular cloning of transglutaminase gene of the white shrimp Litopenaeus vannamei and its transcription under extrinsic influences
指導教授:鄭文騰鄭文騰引用關係曾美珍
指導教授(外文):Winton ChengMei-Chen Tseng
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水產養殖系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:91
中文關鍵詞:白蝦轉醯胺酵素反轉錄聚合酶連鎖反應即時性聚合酶鏈反應溶藻弧菌
外文關鍵詞:Litopenaeus vannameitransglutaminasereverse transcription polymerase chain reactionreal-time PCRVibrio alginolyticus
相關次數:
  • 被引用被引用:4
  • 點閱點閱:313
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
凝血系統對無脊椎動物和脊椎動物重要的防禦系統,其可防止傷口處血液流失過多和微生物入侵。轉醯胺酵素 (Transglutaminase, TG) (EC 2.3.2.13) 是脊椎與無脊椎動物凝血系統中唯一相同的保守分子。利用寡核苷酸引子進行反轉錄聚合酶連鎖反應,選殖白蝦Litopenaeus vannamei TG cDNA序列,TG基因全長為2624 bp,包含2073 bp轉譯讀窗,可轉譯691個胺基酸,推測其分子量為77.50 kDa,等電點約5.73。在白蝦TG序列上發現有integrin 結合區域RGD (Arg-Gly-Asp)、四個鈣離子結合位置及一個催化三元體 (Catalytic triad )。白蝦TG胺基酸序列與其他節肢動物TG跟人類factorXIIIa相同性介於32.3~89.7 %。在酵素活性分析方面,除血漿外在所有組織均有測到TG活性。使用反轉錄聚合酶連鎖反應與即時聚合酶鏈鎖反應分析各組織中TG mRNA均有表現。以即時聚合酶鏈鎖反應分析,探討水溫、鹽度和注射Vibrio alginolyticus 後對白蝦TG mRNA表現之影響,結果顯示:白蝦血球TG轉錄量於注射V. alginolyticusc後12及24小時明顯降低,肝胰臟於3小時後顯著提高。白蝦血球TG轉錄量於第168小時28 ℃組高於22及34 ℃組。肝胰臟TG轉錄量於28 ℃下明顯高於22及34 ℃下。白蝦蓄養於不同鹽度5、15、25、35及45 ‰環境中血球與肝胰臟TG轉錄量均無明顯變化。
A coagulation system is essential in both invertebrate and vertebrate animals to prevent excess blood loss from wounds and obstruction of invading microorganisms via the wounds. Transglutaminase (TG) (EC 2.3.2.13) is the only molecule conserved in the coagulation systems of all known invertebrate species. TG cDNA is cloned from the haemocytes of white shrimp (Litopenaeus vannamei) by reverse transcription polymerase chain reaction (RT-PCR) using degenerate primers. The full-length cDNAs of TG consisted of 2624 bp with 2073 bp open reading frame, and encoded 691 amino acids with predicting molecular mass of 77.495 kDa with an estimated pI of 5.73. One putative integrin binding motif (cell adhesion site), RGD (Arg-Gly-Asp) and four calcium binding sites, and one catalytic triad were observed in the TG. The percentage of sequence similarity in L. vannamei TG amino acid sequence identity, other arthropod TG, and human factorXIIIa were about 32.3 to 89.7%. TG activity was detected in all tissues, but no activity was detected in the plasma. This study uses RT-PCR and real-time PCR to analyze the TG mRNA expression in each tissue. The quantitative real-time PCR used to evaluate the effects of the expressions of TG genes in temperature and Vibrio alginolyticus-injections treatments. The results were as follows: TG transcripts in haemocytes were significantly lower at 12 and 24 h in V. alginolyticus-injection treatment, and in hepatopancreas, they increased significantly at 3 h and then recovered to basic value. The TG transcripts expressions in haemocytes at 28 ℃ were higher than 22 and 34 ℃ treatment at 168 h, and the TG transcripts expressions in hepatopancreas at 28 ℃ treatment were significantly higher than 22 and 34 ℃. Rearing at a salinity of 5, 15, 25, 35 and 45 ‰, TG transcripts in haemocytes and hepatopancreas of white shrimp showed no significant difference.
摘要........................................................I
Abstract..................................................III
誌謝.......................................................V
目錄......................................................VI
圖表目錄...................................................XI
第1章 前言..................................................1
第2章 文獻回顧...............................................5
2.1白蝦簡介.................................................5
2.1.1 白蝦分類地位、分布及生態習性.............................5
2.1.2 台灣白蝦養殖沿革與現況..................................6
2.2甲殼類防禦機制............................................6
2.2.1 體液性免疫反應.........................................6
2.2.2 細胞性免疫反應.........................................7
2.3 凝血系統................................................8
2.3.1 無脊椎動物凝血系統......................................8
2.3.2 甲殼類凝血模式..........................................9
2.3.3 TG構造與功能...........................................10
2.3.4 脊椎動物TG酵素研究......................................11
2.3.5 無脊椎動物TG酵素功能研究.................................12
2.3.6 無脊椎動物TG基因層面的研究................................13
2.3.7 凝血系統與原酚氧化酵素系統相互關係.........................13
2.4外在因子對甲殼類免疫的影響...................................14
2.4.1病原感染對甲殼類免疫的影響.................................14
2.4.2水溫對甲殼類免疫的影響.....................................15
2.4.3 鹽度對甲殼類免疫的影響....................................15
第3章 材料與方法...............................................17
3.1 白蝦 (transglutaminase, TG) 基因選殖.......................17
3.1.1實驗動物取得 .............................................17
3.1.2全量核醣核酸 (Total RNA) 之萃取............................17
3.1.3 TG基因引子 ..............................................18
3.1.3.1引子 (primer) 的設計原則.................................18
3.1.3.2退化性引子 (degenerated primer) 的設計...................18
3.1.3.3專一性引子 ..............................................18
3.1.4反轉錄-聚合酶連鎖反應 (reverse transcription polymerase chain reaction, RT-PCR).............................................20
3.1.4.1 互補去氧核醣核酸之反轉錄之合成(cDNA synthesis by reverse transcription, RT)............................................20
3.1.4.2聚合酵素鏈鎖反應 (polymerase chain reaction, PCR).....20
3.1.5 DNA凝膠電泳分析...........................................22
3.1.6 勝任細胞之製備 (competent cell preparation) ......................................................22
3.1.7 DNA重組接合 (ligation)...................................22
3.1.8 質體轉型 (transformation)................................23
3.1.9 選殖株篩選 (screening)...................................23
3.1.10互補去氧核醣核酸之快速增幅 (rapid amplificationof cDNA ends, RACE )........................................................23
3.1.10.1互補去氧核醣核酸之5’端區域快速增幅 (5’-rapid amplification of cDNA ends, 5’-RACE) ......................................23
3.1.10.2互補去氧核醣核酸之3’端區域快速增幅 (3’- rapid amplification of cDNA ends, 3’-RACE) ......................................25
3.1.11核酸序列之分析整理和比對...................................26
3.1.12 TG基因親緣關係分析 (phylogeny)...........................27
3.2 白蝦TG基因之組織分佈 ......................................27
3.2.1 RT-PCR分析組織分佈 ......................................27
3.2.2 Real-time PCR分析組織基因表...............................27
3.3 白蝦各組織器官之TG活性分析...................................27
3.3.1 Biotin label casein的配製方法............................28
3.3.2 Biotin label casein的飽和比率............................28
3.3.3 組織溶液製備.............................................28
3.3.4 TG活性測定...............................................29
3.3.5 TG之蛋白質測定...........................................29
3.4 相對定量PCR (Relative real-time quantitation PCR)..........29
3.4.1 real-time 專一性引子之設計................................29
3.4.2即時聚合酶鏈鎖反應 (real-time quantitation PCR)............30
3.4.3 資料分析彙整.............................................31
3.5白蝦TG基因表現 ..............................................32
3.5.1 注射病原菌Vibrio alginolyticus及生理食鹽水對白蝦TG 表現量之影響............................................................32
3.5.2 水溫對白蝦TG表現量之影響..................................32
3.5.3 鹽度對白蝦TG表現量之影響..................................33
3.5.4 統計分析................................................33
第4章 結果....................................................34
4.1 白蝦轉醯胺酵素 (transglutaminase, TG) 基因選殖及序列分析.....34
4.2 TG基因親緣關係分析.........................................41
4.3 白蝦TG基因之組織分佈.......................................44
4.4 各組織TG活性表現...........................................45
4.5 白蝦TG基因表現量之因子......................................48
4.5.1注射病原菌Vibrio alginolyticus及生理食鹽水對白蝦TG表現量之影響.48
4.5.2水溫對白蝦TG表現量之影響...................................48
4.5.3鹽度對白蝦TG表現量之影響...................................48
第5章 討論 .............................................55
5.1 白蝦轉醯胺酵素 (transglutaminase, TG) 基因選殖..............55
5.2 白蝦TG之組織表現...........................................56
5.3 不同因子影響白蝦TG基因之表現................................57
5.3.1病原感染對白蝦免疫的影響...................................57
5.3.2 環境因子對白蝦免疫的影響...................................58
第6章 結論.....................................................60
參考文獻.......................................................61
附錄..........................................................77
作者簡介 ......................................................91
中華民國台灣地區漁業統計年報,2003。行政院農業委員會漁業署。
王融雍,2004。鹽度與溫度變化影響白蝦免疫反應及其抗Vibrio alginolyticus感染之研究。國立臺灣海洋大學水產養殖學系碩士班論文。
余俊億,2000。太平洋白蝦感桃拉症病毒後血漿之分析。國立臺灣大學動物研究所碩士論文。
吳守進,2004。白蝦產業發展暨技術創新研討會。水產種苗78:10-13。
陳夢怡,2004。無脊椎動物有一種以上的TG?草蝦第二型轉麩醯胺酵素參與凝血反應。國立臺灣大學動物研究所碩士論文。
連姿雯,1999。太平洋白蝦感染桃拉症病毒後血球之分析。國立臺灣大學動物研究所碩士論文。
Achyuthan, K.E., Greenberg, C.S., 1987. Identification of a guanosine triphosphate-binding site on guinea pig liver transglutaminase. Role of GTP and calcium ions in modulating activity. J. Biol. Chem. 262, 1901-1906.
Aeschlimann, D., Koeller, M.K., Alen-Hoffmann, B.L., Mosher, D.F., 1998. Isolation of a cDNA encoding a novel member of the transglutaminase gene family from human keratinocytes. J. Biol. Chem. 273, 3452-3460.
Aeschlimann, D., Paulsson, M., 1994. Transglutaminase: protein cross-linking enzymes in tissues and body fluid. Thromb. Haemost. 71, 402-415.
Akimov, S.S., Belkin, A.M., 2001. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98, 1567-1575.
Ambron, R.T., Kremzner, L.T., 1982. Post-translational modification of neuronal proteins: evidence for transglutaminase activity in R2, the giant cholinergic neuron of Aplysia. Proc. Natl. Acad. Sci. 79, 3442-3446.
Anderson, D. P., 1992. Immunostimulant, adjuvants and vaccine carriers in fish: Application to aquaculture. Annual. Rev. Fish Dis. 2, 281-307.
Bachère, E., Mialhe, E., Rodriguez, J., 1995. Identification of defence effectors in the haemolymph of crustaceans with particular reference to the shrimp Penaeus Japonicus (Bate): prospects and application. Fish Shellfish Immuol. 5, 597-612.
Bauchau, A.G., 1981. Crustaceans. Invertebrate Blood Cells. Academic Press, New York, 385-420.
Barracco, M.A., Duvic, B., Söderhäll, K., 1991. The β-1,3-glucanbinding protein from the crayfish Pacifastacus leniusculus, when reacted with a β-1,3-glucan, induces spreading and degranulation of crayfish granular cells. Cell Tissue Res. 266, 491-497.
Battaglia, D.E., Shapiro, B.M., 1988. Hierarchies of protein cross-linking in the extracellular matrix: involvement of an egg surface transglutaminase in early stages of fertilization envelope assembly. J. Biol. Chem. 107, 2447-2454.
Bell, K.L., and Smith, V.J., 1993. In vitro superoxide production by hyaline cells of the shore crab Carcinus maenas. Dev. Comp. Immunol. 17, 211-219.
Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
Candi, E., Melino, G., Mei, G., Tarcsa, E., Chung, S.I., Marekov, L.N., Steinert, P.M., 1995. Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. J. Biol. Chem. 270, 26382-26390.
Castille, F.J., Lawrence, A., 1981. The effect of salinity on the osmotic, sodium and chloride concentrations in the hemolymph of euryhaline shrimp of the genus Penaeus. Comp. Biochem. Physiol. 68, 78-80.
Chen, J.C., Lin, M.N., Ting, Y.Y., Lin, J.N., 1995. Survival, haemolymph osmolality and tissue water of Penaeus chinensis juveniles acclimated to different salinities and temperature levels. Comp. Biochem. Physiol. 110, 253-258.
Chen, J.C., Wang, L.U. 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immuol. 18, 269-278.
Cheng, W., Chen, J.C., 2000. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn, Macrobrachium rosenbergii. Fish Shellfish Immuol. 10, 387-391.
Cheng, W., Chen, J.C., 2001a. Effects of intrinsic and extrinsic factors on the haemocyte profile of the prawn, Macrobrachium rosenbergii. Fish Shellfish Immunl. 11. 53-63.
Cheng, W., Chen, J.C., 2001b. Effects of nitrite on interaction between the giant freshwater prawn Macrobrachium rosenbergii and its pathogen Lactococcus garvieae. Dis. Aquat. Org. 50, 189-197.
Chisholm, J.R.S., Smith, V. J., 1992. Antibacterial activity in the Haemocytes of the shore crab, Carcinus maenas. J. Mar. Biol. Assoc. U.K. 72, 529-542.
Davids, B.J., Mehta, K., Fesus, L., McCaffery, J.M., Gillin, F.D., 2004. Dependence of Giardia lamblia encystations on novel transglutaminase activity. Mol. Cell Biochem. 136, 173-180.
Dhar, A.K., Michelle, M.R., Pain, A., Klimpel, K.R., 2002. The Lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J. Virol. 76, 7140-7149.
Duncan, D.B., 1955. Multiple-range and multiple F test. Biometrics. 11, 1-42.
Ey, P.L., 1991. Phagocytosis in crustacean: The role of opsonins. In: Gupta, A.P. (Ed.), Immunology of insects and other arthropods. CRC press, Boca Raton, Florida, pp. 201-235.
Fesus, L., 1993. Biochemical events in naturally occurring forms of cell death. FEBS Lett. 328, 1-5.
Fesus, L., Thomazy, V., Falus. A., 1987. Induction and activation of tissue transglutaminase during proprammed ceu death. FEBS Lett. 224, 104-108.
Folk, J.E., Finlayson, J.S., 1977. The ε-(β-glutamyl) lysine cross-link and the catalytic role of transglutaminase. Adv. Protein Chem. 31, 1-133.
Fontaine, C.T., Lightner, D.V., 1974. Observations on the phagocytosis and elimination of carmine particles injected into the abdominal musculature of the white shrimp, Penaeus setiferus. J. Invert Pathol. 24, 141-148.
Gardner, J.M., Hynes, R.O., 1985. Interaction of fibronectin with its receptor on platelets. Cell 42, 439-448.
Götz, P., 1986. Encapsulation in arthropods. In: Immunity in Invertebrates: Brehelin, M., (Ed.), Cells, Molecules, and Defense Reactions. Springer verlag, Berlin, pp.153-170.
Greenberg, C.S., Birckbichler, P.J., Rice, R.H., 1991. Transglutaminase: multifunctional cross-linking enzyme that stabilize tissue. FASEB J. 5, 3071-3077.
Grenard, P., Bates, M.K., Aeschlimann, D., 2001. Evolution of transglutaminase genes: identification of a transglutaminase gene cluster on human chromosome 15q15. Structure of the gene encoding transglutaminase X and a novel gene family member, transglutaminase Z. J. Biol. Chem. 276, 33066-33078.
Grundmann, U., Amann, E., Zettlmeissl, G., Kupper, H.A., 1986. Characterization of cDNA coding for human factor XIIIa. Proc. Natl. Acad. Sci. 21, 8024-8028.
Hall, M., Wang, R., van Antwerpen, R., Sottrup-Jensen, L., Söderhäll, K., 1999. The crayfish plasma clotting protein : a vitellogenin-related protein responsible for clot formation crustacean blood. Proc. Natl. Acad. Sci. 96, 1965-1970.
Hennig, O. L., Andreatta, E.R., 1998. Effect of temperature in an intensive nursery system for Penaeus paulensis. Aquacluture 164, 167-172.
Ho, K.C., Quarmby, V.E., French, F.S., Wilson, E.M., 1992. Molecular cloning of rat prostate transglutaminase complementary DNA. The major androgen-regulated protein DP1 of rat dorsal prostate and coagulating gland. J. Biol. Chem. 267, 12660-12667.
Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R., 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298, 129-149.
Hose, J.E., Martin, G.C., 1989. Defense functions of granulocytes in the fidgeback prawn Sicyonia ingentis. J. Invert Pathol. 53, 335-346.
Hose, J.E., Martin, G.G., Grenard, A.S., 1990. A decapod hemocyte classification scheme integrating morphology, cytochemistry and function. Biol. Bull. 178, 11-45.
Ichinose, A., Bottenus, R.E., Davie, E.W., 1990. Structure of transglutaminase. J. Biol. Chem. 265, 13411-13414.
Ichinose, A., Hendrickson, L.E., Fujikawa, K., Davie, E.W., 1986. Amino acid sequence of the a-subunit of human factor XIII. Biochem. 25, 6900-6906.
Inouye, K., Miwa, S., Oseko, N., Nakano, H., Kimura, T., Momoyama, K., Hiraoka, M., 1994. Mass mortalities of cultured kuruma shrimp Penaeus japonicus in Japan in 1993: electron microscopic evidence of the causative virus. Fish Pathol. 149-158.
Ikura, K., Kometani, T., Yoshikawa, M., Sasaki, R., Chiba, H., 1980. Crosslinking of casein components by Transglutaminase.Agric. Biol. Chem. 44, 1567-1573.
Iwanaga, S., Kawabata, S., 1998. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab. Front. Biosci. 3, 973-984.
Iwanaga, S., Miyata, T., Tokunaga, F., Muta, T., 1993. Molecular mechanism of hemolymph clotting system in Limulus. Tront. Biosci. 68, 1-32.
Jiravanichpaisal, P., Söderhäll, K., Söderhäll, I., 2004. Effect of water temperature on the immune response and infectivity pattern of white spot syndrome virus (WSSV) in freshwater crayfish. Fish Shellfish Immuol. 17, 265-275.
Johansson, M.W., 1999. Cell adhesion molecules in invertebrate immunity. Dev. Comp. Immunol. 23, 303-315.
Johansson, M.W., Keyser, P., Sritunyalucksana, K., Söderhäll K., 2000. Crustacean haemocytes and haematopoiesis. Aquaculature 19, 45-52.
Johansson, M.W., Söderhäll, K., 1985. Excytosis of the prophenoloxidase activating system from crayfish hemocytes. J. Comp. Physiol. 156, 175-181.
Johansson, M.W., Söderhäll, K., 1989a. A cell adhesion factor from crayfish hemocytes has degranulating activity towards crayfish granular cells. Insect Biochem. Mol. Biol. 2, 183-190.
Johansson, M.W., Söderhäll, K., 1989b. Cellular immunity in crustaceans and the proPO system. Parasitol. Today. 5, 171-176.
Johansson, M.W, Söderhäll, K., 1989c. A peptide containing the cell adhesion sequence RGD can mediate degranulation and cell adhesion of crayfish granular haemocytes in vitro. Insect Biochem. Mol. Biol. 19, 573-579.
Johnson, P.T., 1987. A review of fixed phagocytic and pinocytic cells of decapod crustaceans with remark on hemocytes. Dev. Comp. Immunol. 23, 303-315.
Kanaide, H., Shainoff, J.R., 1975. Cross-linking of fibrinogen and fibrin by fibrin-stablizing factor (factor XIIIa). J. Lab. Clin. Med. 85, 574-597.
Kim, H. C., Idler, W.W., Kim, I.G., Han, J.H., Chung, S.I., Steinert, P.M., 1991. The complete amino acid sequence of the human translutaminase K enzyme deduced from the nucleic acid sequences of cDNA clones. J. Biol. Chem. 266, 536-539.
Kurth, L., Rogers, P.J., 1984. Transglutaminase catalyzed crosslinking of myosin to soya protein casein and gluten. J. Food Sci. 49, 573-576.
Le Moullac, G., Haffner P., 2000. Environmental factors affecting immune responses in crustacean. Aquaculture 191, 121-131.
Lee, K.K., Chen, F.R., Yu, S.R., Yang, T.I., Liu, P.C., 1997. Effects of extracellular products of Vibrio alginolyticus on penaeid prawn plasma components. Lett. Appl. Microbiol. 24, 98-100.
Lee K.K., Chen, Y.L., Liu, P.C., 1999. Hemostasis of Tiger prawn Penaeus monodon affected by Vibrio harveyi, extracellular products and a toxic cysteine protease. Blood Cells Mol. Dis. 15, 180-192.
Lightner, D.V., Lewis, A.D., 1975. A septicemic bacterial disease syndrome of penaeid shrimp. Disease of crustaceans. Mar. Fish Rev. 37, 25-28.
Lo, C. F., Ho, C.H., Chen, C.H., Liu, K.F., Chiu, Y.L., Yeh, P.Y., Prng, S.E., Hsu, H.C., Liu, H.C., Chang, C.F., Su, M.S., Wang, C.H., Kou, G.H., 1997. Detection and tissue tropism of white spot syndrome baculovirus (WSBV) in captured brooders of Penaeus monodon with a special emphasis on reproductive organs. Dis. Aquat. Org. 30, 53-72.
Mandal, D., Moitra, P.K., Basu, J., 2002. Mapping of a spectrin-binding domain of human erythrocyte membrane protein 4.2. Biochiem. 364, 841-847.
Mantel, L.H., Farmer, L.L., 1983. Osmotic and ionic regulation. In: Mantel, p. 53-161., Vol. 5: Internal anatomy and physiologica regulation. L. H. (Eds.) The biology of Crustea. Acadmic Press. New York.
Matsubara, J., Kuniyoshi, H., Ikegami, S., 2002. Molecular characterization of a novel nuclear transglutaminase that is expressed during starfish embryogenesis. Eur. J. Cell Biol. 269, 1957-1967.
Mehta, K., Rao, U.R., Vickery, A.C., Birckbichler, P.J., 1990. Significance of transglutaminase-catalyzed reactions in growth and development of filarial parasite, Brugia malayi. Biochem. Biophys. Res. Commun. 173, 1051-1057.
Menz, A., Blake, B.F., 1980. Experiments on the growth of Penaeus vannamei Boone. J. Exp. Mar. Biol. Ecol. 48, 99-111.
Melino, G., Piacentini, M., 1998. ‘Tissue’ transglutaminase in cell death: a downstream or a multifunctional upstream effector? FEBS Lett. 430, 59-63.
Mix, M.C., Sparks, A.K., 1980. Hemocyte classification and differential counts in the dungenes crab, Cancer magister. J. Invert Pathol. 35, 134-143.
Mori, K., Stewart, J.E., 1978. Natural and induced bactericidal activity of the hepatopancreas of the American lobster, Homarus americanus. J. Invert Pathol. 32, 171-176.
Mozingo, N.M., Chandler, D.E., 1991. Evidence for the existence of two assembly domains within the sea urchin fertilization envelope. Dev. Biol. 146, 148-157.
Muta, T., Iwanaga, S., 1994. Clotting and immune defense in Limulidae. In Rinkevich, B., Muller, W.E.G., (Eds.), Invertebrate immunology. Department of Biology. Kyushu University, Fukuoka, pp.154-189.
Muta, T., Iwanaga, S., 1996. The role of hemolymph coagulation in innate immunity. Curr. Opin. Microbiol. 8, 41-47.
Nappi, A.J., Ottaviani, E., 2000. Cytotoxicity and cytotoxic molecules in invertebrates. BioEssays. 22. 469-480.
Nielsen, V. G., Gurleyjr, W.Q., Burch, T.M., 2004. The impact of factor XIII on coagulation kinetics and clot strength determined by thrombelastography. Anesthesia analgesia. 99, 120-123.
Osaki, T., Okino, N., Tokunaga, F., Iwanaga, S., Kawabata, S., 2002. Proline-rich cell surface antigens of horsehoe crab hemocytes are substrates for protein cross-linking with a clotting protein coagulin. J. Biol. Chem. 287, 2185-2195.
Pedersen, L.C., Yee, V.C., Bishop, P.D., LeTrong, I., Teller, R.C., Stenkamp, R.E., 1994. Transglutaminase factor XIII uses protemase-like catalytic triad to crosslink macromolecules. Protein Sci. 3, 1311-1315.
Persson, M., Vey, A., Söderhäll, K., 1987. Encapsulation of foreign particles in vitro by separated blood cells from crayfish, Astacus Leptodactylus. Cell Tissue Res. 247, 409-415.
Phillips, M.A., Stewart, B.E., Qin, Q., Chakravarty, R., Floyd, E.E., Jetten, A.M., 1990. Primary structure of keratinocyte transglutaminase. Proc. Natl. Acad. Sci. 87, 9333-9337.
Piacentini, M., Fesus, L., Farrace, M.G., Piredda, L., Melino, G., 1991. The expression of “tissue” transglutaminase in two human cancer cell lines is related with the proprammed cell death (apoptosis). Eur. J. Cell Biol. 54, 246-254.
Poon, M.C., Russell, J.A., Low, S., Sinclair, G.D., Jones, A.R., Blahey, W., Ruether, B.A., D.I., Hoar, 1989. Hemopoietic origin of factor XIIIa-subunits in platelets, monocytes and plasma. Evidence from bone marrow transplantation studies. J. Clin. Invest. 84, 787-92.
Prasanna, S.N., Iismaa, S., Begg, G., Freymann, D.M., Graham, R.M., Lorand, L., 2002. Conserved tryptophan in the core domain of transglutaminase is essential for catalytic activity. Proc. Natl. Acad. Sci. 99, 2738-2742.
Prayitno, S.B., Latchford, J.W., 1995. Experimental infections of crustaceans with luminous bacteria related to Photobacterium and Vibrio. Effect of salinity and pH on infectiosity. Aquaculture 132, 105-112.
Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., Rhodes, C.P., 1985. Invertebrate immunity: basic concepts and recent advances. Int. Rev. Cytol. 97, 186-350.
Rodriguez, J., LeMoullac, G., 2000. State of the art of immunological tools and health control of penaeid shrimp. Aquaculture 191, 109-119.
Roux, M.M., Pain, A., Klimpel, K.R., Dhar, A.K. 2002. The lipopolysaccharide and β-1,3-glucan binding protein gene is upregulated in white spot virus-infected shrimp (Penaeus stylirostris). J. Virol. 76, 7140-7149.
Ruoslahti, E., 1996. RGD and other recognition sequences for integrins. Ann. Rev. Cell Biol. 12, 697-715.
Seiving, B., Stenberg, P., Nilsson, B., 1991. A new assay for transglutaminase. Scand. J. Clin. Lab. Invest. 51, 119-124.
Sinderman, C.J., 1977. Black-spot disease of fresh-water shrimp. In Disease diagnosis and control in North American marine aquaculture. Vol. 6. Elsevier, New York, pp. 82-84.
Singer, M.A., Hortsch, M., Goodman, C.S., Bentley, D., 1992. Annulinm, a protein expressed at limb segment boundaries in the grasshopper embryo, is homologous to protein cross-linking transglutaminase. Dev. Biol. 154, 143-159.
Smith, V.J., Chisholm, J.R.S., 1992. Non-cellular immunity crustacean. Fish Shellfish Immuol. 2, 1-31.
Smith, V. J., Söderhäll, K., 1983a. Induction of degranulation and lysis of haemocytes in the freshwater crayfish, Astacus astacus, by components of the prophenoloxidase activating system in vitro. Cell Tissue Res. 233, 295-303.
Smith, V.J., Söderhäll, K., 1983b. β-1,3-glucan activation of erustacean hemocytes in vitrw and in vivo. Biol. Bull. 164, 299-314.
Srimal, S., Dorai, D.T., Somasundaran, M., Bachhawat, B.K., Miyata T., 1985. A new hemagglutinin from the amoebocytes of the horesehoe crab Carcinoscorpius rotundicauda. Purification and role in cell aggregation, Biochem. J. 230, 321-328.
Söderhäll, K., 1982. Prophenoloxidase activating system and melanization recognition mechanism in arthropods review. Dev. Comp. Immunol. 5, 565-573.
Söderhäll, K., Aspan, A., Duvic, B., 1990. The proPO systemand associated proteins; role in cellular communication in arthropods. Res. Immunol. 141, 896-907.
Söderhäll, K., Cerenius, L., 1992. Crustacean immunity. Annual. Rev. Fish Dis. 2, 3-23.
Söderhäll, K., Cerenius, L., 1998. Role of the prophenoloxidase activating system in invertebrate immunity. Curr. Opin. Microbiol. 10, 23-28.
Söderhäll, K., Smith, V.J., 1983. Separation of the hemocyte populations of Carcinus maenas and other marine decapods, and uptake of bacteria by isolated hemocyte populations of two crustacwan: analysis of reactive oxygen species. Dev. Comp. Immunol. 18, 201-209.
Söderhäll, K., Smith, V.J., Johansson, M.W., 1986. Excytosis and uptake of bacteria by isolated hemocyte populations of two crustacean: evidence for cellular cooperation in the defense reactions reactions of arthropods. Cell Tissue Res. 245, 43-49.
Söderhäll, K., Sritunyalucksana, K., 2000. The proPO and clotting system in crustaceans. Aquaculture 19, 53-69.
Söderhäll, K., Wang, R., Liang, Z., Hal, M., 2001. A transglutaminase involved in the coagulation system of the freshwater crayfish, Pacifastacus Ieniusculus. Tissue localization and cDNA cloning. Fish Shellfish Immuol. 11, 623-637.
Song, Y.L., Hu, K.Y., Huang, C.C., Chen, M.Y., 2005. More than one type of transglutaminase in invertebrates? A second type of transglutaminase is involved in shrimp coagulation. Dev. Comp. Immunol. 29, 1003-1016.
Song, Y.L., Huang, C.C., Sritunyalucksana, K., Söderhäll, K., 2004. Molecular cloning and characterization of tiger shrimp (Penaeus monodon) transglutaminase. Dev. Comp. Immunol. 28, 279-294.
Song, Y.L., Yu, C.I., Lien, T.W., Huang, C.C., Lin, M.N. 2003. Haemolymph parameters of Pacific white shrimp (Litopenaeus vannamei) infected with Taura syndrome virus. Fish Shellfish Immuol. 14, 317-331.
Stewart, J.E, Foley, E.M., 1969. A precipitin reaction of the hemolymph of the lobster Homarus americanus. J. Fish Res. Bd Can. 26, 1392-1397.
Sugino, H., Terakawa, Y., Yamasaki, A., Nakamura, K., Higuchi, Y., Matsubara, J., 2002. Molecular characterization of a novel nuclear transglutaminase sthat is expressed during starfish embryogenesis. Eur. J. Biochem. 269, 1957-1967.
Tait, J., 1911. Types of Crustacean blood coagulation. J. Mar Biol. Assoc. U.K. 9, 191-198.
Takahashi, Y., Ltami, T., Kondo, M., 1995. Immunodefense system of Crustacea. Fish Pathol. 30, 141-150.
Takahashi, N., Takahashi, Y., Putnam, F.W., 1986. Primary structure of blood coagulation factor XIIIa (fibrinoligase, transglutaminase) from human placenta. Proc. Natl. Acad. Sci. 83, 8019-8023.
Tarcsa, E., Marekov, L.N., Andreoli, J., Idler, W.W., Candi, E., Chung, S.I., 1997. The fate of trichohyalin. Sequential post-translational modifications by peptidyl-arginine deiminase and transglutaminase. J. Biol. Chem. 272, 27893-27901.
Tharaud, C., Ribet, A.M., Costes, C., Gaillardin, C., 1994. Secretion of human blood coagulation factor XIIIa by the yeast Yarrowia lipolytica. Gene. 121, 111-119.
Theopold, U., Li, D., Scherfer, C. Korayem, A.M., Zhao, Z., Schmidt, O., 2002. Insect hemolymph clotting: evidence for interaction between the coagulation system and the prophenoloxidase activating cascade. Insect Biochem. Mol. Biol. 32, 919-928.
Thörnqvist, P.O., Johansson, M.W., Söderhäll, K., 1994. Opsonic activity of cell adhesion protein and β-1,3-glucan binding protein from two crustaceans. Dev. Comp. Immunol. 18, 3-12.
Tokunaga, F., Muta, T., Iwanaga, S., Ichinose, A., Davie, E.W., Kuma. K., 1993a. Limulus hemocyte transglutaminase. cDNA cloning, amino acid sequence, and tissue localization. J. Biol. Chem. 268, 262-268.
Tokunaga, F., Yamada, M., Miyata, T., Ding, Y.L., Hiranaga-Kawabata, M. Muta, T., 1993b. Limulus hemocyte transglutaminase. Its purification and characterization, and identification of the intracellular substrates. J. Biol. Chem. 268, 252-261.
Torshin, I., 2002. Structural criteria of biologically active RGD-sites for analysis of protein cellular function-a bioinformatics study. Med. Sci. Monit. 8, 301-312.
Truscott, R., White, K.N., 1990. The influence of metal and temperature stress on the immune system of crabs. Funct. Ecol. 4, 455-461.
Tueopold, U., Schmidt, O., Söderhäll, K., Dushay, M.S., 2004. Coagulation in arthropods: Defence, wound closure and healing. Trends Immunol. 25, 289-294.
Tzou, P., DeGregorio, E., Lemaitre, B., 2002. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102-110.
Vargas-Albores, F., Guazmán, M.A., Ochoa, J.L., 1993. A lipopolysaccharide-binding agglutinin isolated from brown shrimp (Penaeus californiensis Holmes) haemolymph. Comp. Biochem. Physiol. 104, 407-413.
Wang, L.U., Chen, J.C., 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels. Fish Shellfish Immuol. 18, 269-278.
Weisberg, L.J., Shiu, D.T., Conkling, P.R., Shuman, M.A., 1987. Identification of normal human peripheral blood monocytes and liver as sites of synthesis of coagulation factor XIIIa-chain. Blood 70, 579-82.
Wongprasert, K., Khanobdee, K., Glunukarn, S.S., Meeratana, P., Withyachumnarnkul, B., 2003. Time-course and levels of apoptosis in various tissures of black tiger shrimp Penaeus monodon infected with white-spot syndrome virus. Dis. Aquat. Org. 55, 3-10.
Wyban, J., Walsh, W.A., Godin, D.M., 1995. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture 138, 267-279.
Yamada, K. M., Kennedy, D.W., 1984. Dualistic nature of adhesive protein function: fibronectin and ist biologically active peptide fragments can autoinhibit fibronectin function. J. Cell Biol. 99, 29-36.
Yeh, M. S., Huang, C.J., Leu, J.H., Lee, Y.C., Tsai, I.H., 1999. Molecular cloning and characterization of a hemolymph clottable protein from tiger shrimp (Penaeus monodon). FEBS Lett. 266, 624-633.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝文彥,1996。家庭因素與偏差行為關係之研究。警政學報,28,139-155。
2. 楊士隆、鄧煌發,1996。一般性犯罪理論犯罪多樣化概念之驗證:以各類型犯罪人在監負向行為之分析為例。犯罪學期刊,2,49-78。
3. 楊國樞,1986。家庭因素與子女行為:台灣研究的評析。中華心理學刊,28(1),7-28。
4. 馮莉雅,1997。國中學生偏差行為與社會控制因素之相關研究-以高雄市為例。教育資料文摘,39(2),171-192。
5. 許春金、孟維德,1997。家庭、學校、自我控制與偏差行為,中央警察大學學報,30期,225-256。
6. 許春金、周文勇、蔡田木,1996。男性與女性少年偏差行為成因差異之實證研究,犯罪學期刊,2期,1-14。
7. 許春金,1997。閔南籍、客家籍、山地籍少年偏差行為之類型、盛行率及成因之比較分析,中央警察大學學報,30期,141-180。
8. 馬傳鎮,1994。我國青少年犯罪現況及其防制對策之探討。警專學報,1(7),548-591。
9. 馬傳鎮,1992。少年犯罪問題之探討。學生輔導通訊,20,48-55。
10. 侯崇文,1996。巨視社會控制、微視社會控制與青少年犯罪。犯罪學期刊,2,15-48。
11. 侯崇文、周愫嫻,1998。青少年出入不當場所與偏差行為。中央警察大學學報,33,153-174。
12. 林世英,1997。參與社會活動之防止偏差行為效果。觀護,24,2-14。
13. 林世英,1994。青少年的規範意識、自我意識及社會態度對偏差行為影響之研究。警學叢刊,24,231-266。
14. 周愫嫻,1996。正式與非正式社會控制對青少年偏差行為的嚇阻效果。犯罪學期刊,1,31-50。
15. 吳武典,1997。國中偏差行為學生學校生活適應之探討。教育心理學報,29,25-49。