跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 02:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李濟臺
研究生(外文):Lee, Chi-tai
論文名稱:水溫、pH及光照週期對血鸚鵡褪色及成長之研究
論文名稱(外文):Department of aquaculture, National Pingtung University of Science and Technology
指導教授:鄭文騰鄭文騰引用關係
指導教授(外文):Chen, Win-ton
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:水產養殖系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:52
中文關鍵詞:血鸚鵡水溫pH光照週期褪色率
外文關鍵詞:Blood parrotwater temperaturepHhotoperioddiscoloration
相關次數:
  • 被引用被引用:5
  • 點閱點閱:1661
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
血鸚鵡為台灣重要的觀賞魚之一,其褪色的問題一直為養殖業者所困擾。因此,本實驗以血鸚鵡為研究動物,探討不同的水溫、不同的pH及不同的光照週期對其成長、活存、最終總收成量、飼料轉換率及褪色率的影響。實驗期間水質,包括氨、亞硝酸、溶氧、pH及溫度皆被分析,並同時探討養成期間水環境之好壞。
實驗結果顯示,水溫會明顯影響血鸚鵡之成長、褪色率、總收成量及飼料轉換效率。在高水溫 (32℃) 條件下,血鸚鵡具有最佳的成長、褪色率及總收成量,但飼料轉換效率較差。反之在低水溫 (18℃) 下,血鸚鵡的成長不佳,且在實驗期間並沒有褪色之魚在18℃之處理組中被發現。
pH實驗發現,弱酸性 (pH 6-7) 及中性水質 (~pH 7) 對血鸚鵡而言,有良好的成長、總收成量及活存率,但褪色率較差。反之,弱鹼性 (pH 8-9)處理下之血鸚鵡成長、總收成量及活存率最差,但褪色率確明顯最好。
以光照週期的實驗來看,長日照 (L24:D0) 下成長的血鸚鵡活力最佳、顏色最鮮豔、成長最好、總收成量最高,且褪色率也最好。反之在全暗 (L0:D24) 處理下,活力差、成長差、總收成量最差、褪色率也不如L24:D0之處理組。
因此由上述之結果建議,養殖血鸚鵡時,如以成長為考量時,可將血鸚鵡飼養在高水溫 (32℃)、偏弱酸 (pH 6-7) 及長光照 (L24:D0) 之條件下。但如果以褪色為考量,可將血鸚鵡飼養在高水溫 (32℃)、偏弱鹼 (pH 8-9) 及長光照 (L24:D0) 之條件下。
Blood parrot is one of the most important ornamental fish. The blood parrot farmers are persecuted by the problem of discoloration. Thus, this research examined the effect of different water temperature, different pH and different photoperiods on the growth, survival, total harvest, feed conversion and discoloration rate of blood parrot. The water quality of ammonia, nitrite, dissolved oxygen, pH and water temperature were analyzed as a reference data to evaluate the environmental quality.
The results show that water temperature would affect the growth, discoloration, total harvest and feed conservation of blood parrot. The best growth, discoloration and total harvest, but poorer feed conservation were found in the higher water temperature (32oC) treatment. Whereas, poorer growth was found at lower water temperature (18 oC), and no discoloration of fish was found at the 18 oC treatment.
For pH trials, the best growth, total harvest and survival of blood parrot were reared in water of weak acid (pH 6-7) and neutral (~pH 7) water, but poor discoloration rate was also observed in this treatment. For pH 8-9 treatment, growth, total harvest and survival rate of fish were lower as compared to the treatments of pH 6-7 and without pH treatment, but the higher discoloration rate was found at pH 8-9 treatment.
For photoperiod trials, the best growth, brilliant color, the highest total harvest and the best discoloration were found in the condition of continually light (L24:D0). Whereas, the poor activity, poor growth and the worst total harvest were cultured in the environment of dark (L0:D24), and the poor discoloration in dark treatment was worse than L24:D0 treatment.
To sum up of all results, for better grow out of blood parrot, the higher water temperature (32), weak acid (pH 6-7) and longer photoperiod (L24:D0) were suggested. For better discoloration of fish, the higher water temperature (32), weak basic (pH 8-9) and longer photoperiod (L24:D0) were recommended
摘要……………………........……………………………………………….Ⅰ
Abstract…………..…................................………………………………….Ⅱ
誌謝………………………………………………………..………………...Ⅳ
目錄…………………………………………………………………….……Ⅴ
圖表目錄……………………………………………………...……………..Ⅶ
第1章 前言…………………………………………………………………...1
第2章 文獻回顧……………………………………………...........................4
2.1觀賞魚產業概況……………….….......................................................4
2.2台灣觀賞魚產業現況…………………………..……………………..5
2.3血鸚鵡的介紹………………………………..……………………..…7
2.4魚的體色……………………………………………………..……....10
2.5環境對水產動物的影響……………………………..……………....12
第3章 材料與方法……………………………………..……………...……18
3.1實驗用動物……….………………………………..............................18
3.2試驗設計…………………………………..…………………….……18
3.3體重體長之量測……………………………..…………………...…..19
3.4褪色之量測……………………………………………..…………….19
3.5水質分析…………………………………..……………………….…20
3.5.1氨分析………………………………………………………….…20
3.5.2亞硝酸分析…………………………………………………….…21
3.5.3水溫……………………………………………………………….21
3.5.4pH……………………………………………………………….…21
3.5.5溶氧……………………………………………………………….21
3.5.6飼料轉換率…………………………………………………….…21
3.6統計分析……………………………………………………………...21
第4章 結果………………………………………......…………………...…22
4.1血鸚鵡於不同水溫、pH及光照週期下的飼養結果……….………22
4.2血鸚鵡於不同水溫、pH及光照週期下之成長情形……………….24
4.3體長與體重的關係……………………………..………………….…26
4.4於不同水溫、pH及光照週期下血鸚鵡之褪色率……………….…26
4.5實驗期間水質變化…………………………………………………...31
4.5.1氨……………………………………………………………….…31
4.5.2亞硝酸…………………………………………………………….34
4.5.3溶氧…………………………………………………………….…35
4.5.4水溫……………………………………………………………….38
4.5.5 pH………………………………...…………………………….....40
第5章 討論………………………………………………………………….43
第6章 結論………………………………………………………………….46
參考文獻…………………………………………………………………….47
作者簡介…………………………………………………………………….52
魚雜誌社,2001。2001水族年鑑。魚雜誌社。
朱祥海,2001。魚類學。水產出版社。
凌明亮、黃仁術,2006。 飼料添加劑開發與應用技術。科學技術文獻出版社。
徐游宇,2003。屏東地區觀賞魚繁養殖場經營之研究。國立臺灣海洋大學環境生物與漁業科學學系碩士論文。
瞿大維、王森泉、周旭明,2003。台灣觀賞魚-傳承與開創。亞太水族聯盟季報 1:11-17。
Alabaster, J.S., Lloyd, R., 1980. Water quality criteria for freshwater fish. Butterworth. 297.
Barahona-Fernandes, M.H., 1979. Some effects of light intensity and photoperiod on the sea bass larvae Dicentrarchus labrax reared at the Centre Oceanologique de Bretagne. Aquaculture 17, 311-321.
Batty, R.S., Blaxter, J.H.S., Libby, D.A., 1986. Herring Clupea harengus filter feeding in the dark. Mar. Biol. 91, 371-375.
Bendschneider, K., Robinson, R.J., 1952. A new spectrometric method for the determination of nitrite in the sea water. J. Mar. Res. 11, 87-96.
Cai, Y.J., Adelman, I.R., 1990. Temperature acclimation in respiratory and cytochrome oxidase activity in common carp (Cyprinus carpio) Comp. Biochem. Physiol., A 95, 139-144.
Chen, S.M., Chen, J.C., 2003. Effects of pH on survival, growth, molting and feeding of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 218, 613-623.
Chesney, E.J., 1989. Estimating the food requirement of striped bass larvae Morone saxatilis: effects of light, turbidity and turbulence. Mar. Ecol. Progr. Ser. 53, 191-200.

Clarke, G.L., 1965. Light. In: Elements of Ecology. Wiley, New York, pp. 185-242.
Daniels, H.V., Berlinsky, D.L., Hodson, R.G., Sullivan, C.V., 1996. Effects of stocking density, salinity, and light intensity on growth and survival of Southern flounder Paralichthys lethostigma larvae. J. World Aquacult. Soc. 27, 153-159.
David, M.P., 2003. Pigment patterns: fish in stripes and spots. Curr. Biol. 13, 947-950.
Dhillon, R.S., Fox, M., 2004. Growth-independent effects of temperature on age and size at maturity in Japanese medaka (Oryzias latipes). Copeia. 1, 37-45.
Dowd, C.E., Houde, E.D., 1980. Combined effect of prey concentration and photoperiod on survival and growth of larval sea bream, Archosargus rhomboidalis Sparidae. Mar. Ecol. Progr. Ser. 3, 181-185.
Duray, M., Kohno, H., 1988. Effects of continuous lighting on growth and survival of first-feeding larval rabbitfish, Siganus guttatus. Aquaculture 72, 73-79.
El-Sayed, A.F.M., El-Ghobashy, A., Al-Amoudi, M., 1996. Effects of pond depth and water temperature on the growth, mortality and body composition of Nile tilapia, Oreochromis niloticus (L.). Aquacult. Res. 27, 681-687.
Fuchs, J., 1978. Effect of photoperiod on growth and survival during rearing of larvae and juveniles of sole Solea solea. Aquaculture 15, 63-74.
Gross, W.L., Roelofs, E.W., Fromm, P.O., 1965. Influence of photoperiod on growth of green sunfish, Lepomis cyanellus. J. Fish. Res. Bd. Can. 22, 1379-1386.
Hallaraker, H., Folkvord, A., Pittman, K, Stefansson, S.O., 1995a. Growth of Hippoglossus hippoglossus L., related to temperature, light period, and feeding regime. In: Pittman K., Batty R.S., Verreth J., Eds., ICES Marine Science Symposia, Mass Rearing of Juvenile Fish, Bergen, 21-23 June 1993, 201, 196.
Hallaraker, H., Folkvord-Stefansson, S.O., 1995b. Growth of juvenile halibut Hippoglossus hippoglossus related to temperature, day length and feeding regime. Neth. J. Sea Res. 34, 139-147.
Hart, P.R., Hutchinson, W.G., Purser, G.J., 1996. Effects of photoperiod, temperature and salinity on hatchery-reared larvae of the greenback flounder Rhombosolea tapirina Gunther, 1862 . Aquaculture 144, 303-311.
Henderson, P.A. 1984. An approach to the prediction of temperate freshwater fish communities with special reference to water acidification. Central Electricial Research Laboratories. TPRD/L/2727/N84. 21.
Hole, G., Pittman, K., 1995. Effects of light and temperature on growth in juvenile halibut Hippoglossus hippoglossus L. In: Pittman K., Batty R.S., Verreth J., Eds., ICES Marine Science Symposia, Mass Rearing of Juvenile Fish. Bergen, 21-23 June 1993, 201, 197.
Imsland, A.K., Folkvord, A,F., Jonsdottir, O.D.B., Stefansson, S.O., 1997. Effects of exposure to extended photoperiods during the first winter on long-term growth and age at first maturity in turbot Scophthalmus maximus . Aquaculture 159, 125-141.
Jensen, F.B., Brahm, J., 1995. Kinetics of chloride transport across fish red blood cell membranes. J. Exp. Biol. 198, 2237-2244.
Leach, G.J., Taylor, M.H., 1980. The role of cortisol in tress-induced metabolic changes in Fundulus heteroclitus. Gen. Comp. Endocrinol. 42, 219-224.
Levitzki, A., 1988. From epinephrine to cyclic A.M.P., Science 241, 800-806.
Matuszedk, J.E., Goodier, J., Wales, D.L., 1990. The occurrence of Cyprinidae and other small fish species in relation to pH in Ontario lakes. Trans. Am. Fish. Soc. 199, 850-861.
Nilsson, H., Wallin, M., 1997. Evidence for several roles of dynein in pigment transport in melanophores. Cell Motil. Cytoskel. 38, 397-409.
Person-Le, R.J., Baudin, L.F., Devauchelle, N., Metailler, R., Nicolas, J.L., Robin, J., Guillaume, J., 1991. Culture of turbot Scophthalmus maximus . In: McVey J.P., Eds., Handbook of Mariculture. Finfish aquaculture, Vol. 2, CRC Press, Boston, pp. 21-41.
Pickering, A.D., 1981. Stress and Fish. Academic Press. London.
Pickford, G.E., Srivastava, A.K., Slicher, AM, Pang, P.K., 1971. The stress response in the abundance of circulating leucocytes in the killifish, Fundulus heteroclitus. J. Exp. Zool. 177, 89-108.
Ross, E.M., 1989. Signal sorting and amplification throgh G protein-coupled receptors. Neuron. 3, 141-152.
Selye, H., 1950.Stress. Acta, Inc Medical Publishers. Montreal, pp.32-57.
Silva-Garcia, A.J., 1996. Growth of juvenile gilthead seabream Sparus aurata L., reared under different photoperiod regimes. Israeli J. Aquacult., Bamidgeh 48, 84-93.
Solberg, T.S., Tilseth, S., 1987. Variations in growth pattern among yolk-sac larvae of cod Gadus morhua L. due to difference in rearing temperature and light regime. Sarsia 72, 347-349.
Solorzano, L., 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Linmol. Oceanogr. 14, 700-801.
Stefansson, S.O., Hansen, T., 1989. The effect of spectral composition on growth and smolting in Atlantic salmon Salmo salar and subsequent growth in sea cages. Aquaculture 82, 155-162.
Tandler, A., Mason, C., 1983. Light and food density effects on the growth and survival of larval gilthead seabream Sparus aurata, Linnaeus, Sparidae . World Maricult. Soc. Special Publ. Ser. 3, 103-116.
Tuma, M., Zill, A., LeBot, N., Vernos, I., Gelfand, V., 1998. Heterotrimeric kinesin II is the motor responsible for pigment dispersion in Xenopus melanophores. J. Cell Biol. 143, 1547-1558.
West, D.W., Boubee, J.A.T., Barrier, R.G., 1997. Responses to pH of nine fishes and one shrimp native to New Zealand freshwaters. N. Z. J., Mar. Freshwater Res. 31, 461-468.
Wilkie, M.P., Wood, C.M., 1991. Nitrogenous waste excretion, acid–base regulation and ionoregulation in rainbow trout (Onchorhynchus mykiss) exposed to extremely alkaline water, Physiol. Zool. 64 , 1069-1086.
Wilkie, M.P., Wright, P.A., Iwama, G.K., Wood, C.M., 1993. The physiological responses of the Lahontan cutthroat trout (Onchorhynchus clarki henshawi), a resident of highly alkaline Pyramid lake (pH 9.4) to challenge at pH 10. J. Exp. Biol. 175, 173-194.
Wood, C.M., Perry, S.F., Wright, P.A., Bergman, H.L., Randall, D.J., 1989. Ammonia and urea dynamics in the lake Magadi tilapia, a teleost fish adapted to an extremely alkaline environment, Respir. Physiol. 77, 1-20.
Wu, X.B., Bowers, K., Rao, Q.W., Hammer, J., 1998. Visualization of melanosome dynamics within wild-type and dilute melanocytes suggests a paradigm for myosin V function in vivo. J. Cell Biol. 143, 1899-1918.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top