(35.175.212.130) 您好!臺灣時間:2021/05/18 04:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:龔袁正
研究生(外文):Kung yuan-cheng
論文名稱:表面張力流對雷射鍍層影響之數值模擬分析
論文名稱(外文):Simulation Analysis of the Effects of Marangony Flow on Laser Cladding
指導教授:張金龍張金龍引用關係
指導教授(外文):Chang Chin-Lung
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:94
語文別:中文
論文頁數:53
中文關鍵詞:雷射鍍層表面張力流稀釋度
外文關鍵詞:laser claddingMarangony flowdilution
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:32
  • 收藏至我的研究室書目清單書目收藏:0
本文乃利用有限元素法進行表面張力流對雷射鍍層影響之數值模擬分析。在雷射鍍層過程中,融化金屬液體之表面張力係數會導致金屬鍍層厚度之變化並影響鍍層稀釋度,進而直接影響到工件加工後的機械性質。藉由有限元軟體FIDAP進行模擬計算並考量雷射能量、加工速度、表面張力係數以探討溫度場、融池流場及鍍層厚度之變化情形,用以分析表面張力流對雷射鍍層之影響。結果顯示:融熔金屬液體表面張力係數之變化會影響鍍層融池內部流場方向,進而牽引融池表面並造成鍍層外形厚度改變並且影響溫度分佈。於正的表面張力係數時,會降低鍍層厚度,同時並使得鍍層稀釋度增加。相反的,於負的表面張力係數時,會增加鍍層厚度,同時並使得鍍層稀釋度減少,這都會直接影響到加工件之品質。因此,表面張力係數對於鍍層工件之品質影響匪淺,實為加工製程中不可忽視之重要因素。
The purpose of this thesis is to simulate the effects of marangony flow on the laser cladding processing using finite element method based on three-dimensional model. In the laser cladding processing, the surface tension coefficient of melting metal could influence the thickness and dilution of the metal clad which is leading to the variation of the mechanical properties. Based on the FIDAP software package and processing parameters, the temperature field, flow field of melting metal and thickness of metal clad were investigated to analyze the effects of the marangony flow on the laser cladding processing. The results show that the positive surface tension coefficient will decrease the clad thickness and increase the dilution. On the contrary, the negative surface tension coefficient will lead to a thinner clad and a lower dilution. The process quality will be stronger influenced. Hence, the present results can provide an important data to industry demands and improve the quality of the laser cladding processing.
中文摘要..........................................Ⅰ
英文摘要..........................................Ⅱ
致謝.............................................Ⅲ
目錄.............................................Ⅳ
圖目錄...........................................Ⅵ
符號說明.........................................Ⅷ
第一章 緒論.....................................1
1.1 前言.....................................1
1.2 文獻回顧..................................4
1.3 研究動機..................................9
第二章 理論分析與數值模式.........................12
2.1 理論基礎..........................12
2.2 表面張力效應.......................14
2.3 稀釋度............................16
2.4 數值模式..........................18
2.5 假設條件..........................22
2.6 計算模擬步驟.......................23
第三章 結果與討論................................26
3.1 二維之鍍層數值模擬結果..............26
 3.1.1 鍍層加工速度對雷射能量之影響.........26
3.1.2 表面張力效應對鍍層厚度及稀釋度之影響..30
3.2 三維之鍍層數值模擬結果..............33
3.2.1 正剖面與側剖面之鍍層稀釋度比較.......33
3.2.2 表面張力現象對於融池內部流場之影響....37
3.2.3 加工速度對於鍍層厚度之影響...........42
3.2.4 雷射能量對於鍍層厚度之影響...........44
第四章 結論......................................46
第五章  未來展望...................................48
參考文獻...........................................49
作者簡介...........................................53
[1] Hügel, H. (1992) Strahlwerkzeug Laser. B.G. Teubner Stuttgart.
[2]Steen , W. M. (2001) Laser Material Processing. 2nd ed.
[3]Kou, S., Hsu, S.C. and Mehrabian, R. (1981) Rapid melding and solidification of a surface due to a moving heat flux. Metallurgical Transactions B, 12(1), 33-45.
[4]Mohanty, P.S. and Mazumder, J. (1998) Solidification behavior and microstructural evolution during laser beam-material interaction. Metallurgical and Materials Transactions B, 29(6), 1269-1279.
[5]Kar, A. and Mazumder, J. (1996) Modeling in laser materials processing: melting, alloying, cladding. Laser Processing Surface Treatment and Film Deposition, 129.
[6]Kar, A. and Mazumder, J. (1988) One-dimensional finite-medium diffusion model for extended solid solution in laser cladding of Hf on nickel. Acta Metallurgical et Materialia, 36(3), 701-712.
[7]Rostami, A. A. and Raisi, A. (1997) Temperature distribution and melt pool size in a semi-infinite body due to a moving laser heat source. Numerical Heat Transfer Part A-Applications, 31(7), 783-796.
[8]Nithiarasu, P. (2000) An adaptive finite element procedure for solidification problems. Heat Mass Transfer, 36(3), 223-229.
[9]Kar, A. and Mazumder, J. (1997) One-dimensional diffusion model for extended solid solution in laser cladding. Journal of Applied Physics, 61(7), 2645-2655.
[10] Hoadley, A. F. A. and Rappaz, M. (1992) A thermal model of laser cladding by powder injection. Metallurgical Transacrions B, 23B(1), 631-642.
[11] Weerasinghe, V. M. and Steen, W. M. (1983) Transport Phenomena in
Materials Processing. ASME, New York, Y. N., 15-23.
[12]Chande, T. and Mazumder, J. (1985) Two-dimensional, transient model for mass transport in laser surface alloying. Journal of Applied Physics, 57(6), 2226-2232.
[13]Picasso, M. and Hoadley, A. F. A. (1994) Finite element simulation of laser surface treatments including convection in the melt pool. International Journal of Numerical Methods for Heat & Fluid Flow, 4, 61-83.
[14] Jouvard, J. M., Grevey, D. F., Lemoine, F. and Vannes, A. B. (1997)
Continuous wave Nd:YAG laser cladding modeling: a physical study of trackcreation during low power processing. Journal of Laser Applications, 9(1), 43-50.
[15] Picasso, M., Marsdan, C. F., Wangniere, J. D., Frenk, A. and Rappaz, M. (1994) A simple but realistic model for laser cladding. Metallurgical Transaction B, 25(2), 281-291.
[16] Kim, J. D. and Peng, Y. (2000) Melt pool shape and dilution of laser
cladding with wire feeding. Journal of Materials Processing Technology, 104, 284-293.
[17] Kim, J. D. and Peng, Y. (2000) Plunging method for Nd:YAG laser cladding with wire feeding. Optics and Lasers in Engineering, 33, 299-309.
[18] Qian, M., Lim, I. C., Chen, Z. D. and Chen, W. I. (1997) Parametric studies of laser cladding processes. Journal of Materials Processing Technology, 63, 590-593.
[19] Zhao, Guiping, Cho, Chongdu and Kim, J.D. (2003) Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process. International Journal of Mechanical Sciences, 45, 777-796.
[19] Zhao, Guiping, Cho, Chongdu and Kim, J.D. (2003) Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process. International Journal of Mechanical Sciences, 45, 777-796.
[20]Bamberger, M., Kaplan, W. D., Medres, B. and Shrprlrva, L. (1998) Calculation of process parameters for laser alloying and cladding. Journal of Laser Applications, 10(1), 29-33.
[21]Toyserkani, E., Khajepour, A. and Corbin, S. (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Optics and Lasers in Engineering, 41, 849-867.
[22]Fu, Yunchang, Loredo, A., Martin, B. and Vannes, A.B. (2002) A theoretical model for laser and powder particles interaction during laser cladding. Journal of Materials Processing Technology, 128, 106-112.
[23]Choo, R. T. C. and Szekely, J. (1992) Vaporization kinetics and surface temperature in a mutually coupled spot gas tungsten arc weld and weld Pool. Welding Journal, 71, 77-93.
[24]Choo, R. T. C. and Szekely, J., David, S.A. (1992) On the calculation of the free surface temperature of gas-tungsten-arc weld pool and comparison with experiments. Metallurgical Transaction B, 23B, 371-384.
[25]Wei, P. S.; Chung, F. K. (2000) Unsteady Marangony Flow in a Molten Pool When Welding Dissimilar Metals. Metallurgical and Materials Transactions B, 31B, 1387-1403.
[26]Fuhrich, T., Berger, P. and Hügel, H. (1999) Marangony effect in deep penetration laser welding of steel. Proceeding ICALEO’99, Section-E, 166-175.
[27]Chang, C. L.; Chen, C. D. (2005) Numerical Analysis of the Characteristic of the Melt Pool in Deep Penetration Welding Using Two-beam Laser Technique, the 22th Conference of CSME, D8-003.
[28]Chan, C., Mazumder, J. and Chen, M. M. (1984) A two-dimensional transient model for convection in laser melted pool. Metallurgical Transaction A, 15A, 2175-2184
[29]Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T. (1989) Weld pool development during GTA and laser beam welding of type 304 stainless steel, partⅠ-theoretical analysis. Welding Research Supplement, Dec., 499-509.
[30]Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T.(1989) Weld pool development during GTA and laser beam welding of type 304 stainless steel, partⅡ-theoretical analysis. Welding Research Supplement, Dec., 510-519.
[31]Goldak J. Computer modeling of heat flow in welds. Metall Trans 1986;17:587-600.
[32] Carslaw, H. S. and Jaeger, J. C. (1959) Conduction of heat in solids, 2nd ed., Oxford: Oxford University Press.
[33] Brown, S. and Song, H. (1992) Finite element simulation of welding if large structures. Journal of Engineering for Industry, 144(4), 441-451.
[34] Lampa, C., Kaplan, A. F. H., Powell, J. and Magnusson, C. (1997) An analytical thermodynamic model of laser welding. Journal of Physics D: Applied Physics, 30, 1293-1299.
[35]Yang, L. X., Peng, X. F. and Wang, B. X. (1986) Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing. International Journal of Heat and Mass Transfer, 44, 4465-4473.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top