|
[1] Hügel, H. (1992) Strahlwerkzeug Laser. B.G. Teubner Stuttgart. [2]Steen , W. M. (2001) Laser Material Processing. 2nd ed. [3]Kou, S., Hsu, S.C. and Mehrabian, R. (1981) Rapid melding and solidification of a surface due to a moving heat flux. Metallurgical Transactions B, 12(1), 33-45. [4]Mohanty, P.S. and Mazumder, J. (1998) Solidification behavior and microstructural evolution during laser beam-material interaction. Metallurgical and Materials Transactions B, 29(6), 1269-1279. [5]Kar, A. and Mazumder, J. (1996) Modeling in laser materials processing: melting, alloying, cladding. Laser Processing Surface Treatment and Film Deposition, 129. [6]Kar, A. and Mazumder, J. (1988) One-dimensional finite-medium diffusion model for extended solid solution in laser cladding of Hf on nickel. Acta Metallurgical et Materialia, 36(3), 701-712. [7]Rostami, A. A. and Raisi, A. (1997) Temperature distribution and melt pool size in a semi-infinite body due to a moving laser heat source. Numerical Heat Transfer Part A-Applications, 31(7), 783-796. [8]Nithiarasu, P. (2000) An adaptive finite element procedure for solidification problems. Heat Mass Transfer, 36(3), 223-229. [9]Kar, A. and Mazumder, J. (1997) One-dimensional diffusion model for extended solid solution in laser cladding. Journal of Applied Physics, 61(7), 2645-2655. [10] Hoadley, A. F. A. and Rappaz, M. (1992) A thermal model of laser cladding by powder injection. Metallurgical Transacrions B, 23B(1), 631-642. [11] Weerasinghe, V. M. and Steen, W. M. (1983) Transport Phenomena in Materials Processing. ASME, New York, Y. N., 15-23. [12]Chande, T. and Mazumder, J. (1985) Two-dimensional, transient model for mass transport in laser surface alloying. Journal of Applied Physics, 57(6), 2226-2232. [13]Picasso, M. and Hoadley, A. F. A. (1994) Finite element simulation of laser surface treatments including convection in the melt pool. International Journal of Numerical Methods for Heat & Fluid Flow, 4, 61-83. [14] Jouvard, J. M., Grevey, D. F., Lemoine, F. and Vannes, A. B. (1997) Continuous wave Nd:YAG laser cladding modeling: a physical study of trackcreation during low power processing. Journal of Laser Applications, 9(1), 43-50. [15] Picasso, M., Marsdan, C. F., Wangniere, J. D., Frenk, A. and Rappaz, M. (1994) A simple but realistic model for laser cladding. Metallurgical Transaction B, 25(2), 281-291. [16] Kim, J. D. and Peng, Y. (2000) Melt pool shape and dilution of laser cladding with wire feeding. Journal of Materials Processing Technology, 104, 284-293. [17] Kim, J. D. and Peng, Y. (2000) Plunging method for Nd:YAG laser cladding with wire feeding. Optics and Lasers in Engineering, 33, 299-309. [18] Qian, M., Lim, I. C., Chen, Z. D. and Chen, W. I. (1997) Parametric studies of laser cladding processes. Journal of Materials Processing Technology, 63, 590-593. [19] Zhao, Guiping, Cho, Chongdu and Kim, J.D. (2003) Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process. International Journal of Mechanical Sciences, 45, 777-796. [19] Zhao, Guiping, Cho, Chongdu and Kim, J.D. (2003) Application of 3-D finite element method using Lagrangian formulation to dilution control in laser cladding process. International Journal of Mechanical Sciences, 45, 777-796. [20]Bamberger, M., Kaplan, W. D., Medres, B. and Shrprlrva, L. (1998) Calculation of process parameters for laser alloying and cladding. Journal of Laser Applications, 10(1), 29-33. [21]Toyserkani, E., Khajepour, A. and Corbin, S. (2004) 3-D finite element modeling of laser cladding by powder injection: effects of laser pulse shaping on the process. Optics and Lasers in Engineering, 41, 849-867. [22]Fu, Yunchang, Loredo, A., Martin, B. and Vannes, A.B. (2002) A theoretical model for laser and powder particles interaction during laser cladding. Journal of Materials Processing Technology, 128, 106-112. [23]Choo, R. T. C. and Szekely, J. (1992) Vaporization kinetics and surface temperature in a mutually coupled spot gas tungsten arc weld and weld Pool. Welding Journal, 71, 77-93. [24]Choo, R. T. C. and Szekely, J., David, S.A. (1992) On the calculation of the free surface temperature of gas-tungsten-arc weld pool and comparison with experiments. Metallurgical Transaction B, 23B, 371-384. [25]Wei, P. S.; Chung, F. K. (2000) Unsteady Marangony Flow in a Molten Pool When Welding Dissimilar Metals. Metallurgical and Materials Transactions B, 31B, 1387-1403. [26]Fuhrich, T., Berger, P. and Hügel, H. (1999) Marangony effect in deep penetration laser welding of steel. Proceeding ICALEO’99, Section-E, 166-175. [27]Chang, C. L.; Chen, C. D. (2005) Numerical Analysis of the Characteristic of the Melt Pool in Deep Penetration Welding Using Two-beam Laser Technique, the 22th Conference of CSME, D8-003. [28]Chan, C., Mazumder, J. and Chen, M. M. (1984) A two-dimensional transient model for convection in laser melted pool. Metallurgical Transaction A, 15A, 2175-2184 [29]Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T. (1989) Weld pool development during GTA and laser beam welding of type 304 stainless steel, partⅠ-theoretical analysis. Welding Research Supplement, Dec., 499-509. [30]Zacharia, T., David, S. A., Vitek, J. M. and Debroy, T.(1989) Weld pool development during GTA and laser beam welding of type 304 stainless steel, partⅡ-theoretical analysis. Welding Research Supplement, Dec., 510-519. [31]Goldak J. Computer modeling of heat flow in welds. Metall Trans 1986;17:587-600. [32] Carslaw, H. S. and Jaeger, J. C. (1959) Conduction of heat in solids, 2nd ed., Oxford: Oxford University Press. [33] Brown, S. and Song, H. (1992) Finite element simulation of welding if large structures. Journal of Engineering for Industry, 144(4), 441-451. [34] Lampa, C., Kaplan, A. F. H., Powell, J. and Magnusson, C. (1997) An analytical thermodynamic model of laser welding. Journal of Physics D: Applied Physics, 30, 1293-1299. [35]Yang, L. X., Peng, X. F. and Wang, B. X. (1986) Numerical modeling and experimental investigation on the characteristics of molten pool during laser processing. International Journal of Heat and Mass Transfer, 44, 4465-4473.
|