跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/26 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許功亮
研究生(外文):Hsu Kung-Liang
論文名稱:微流體晶片之混合系統應用與焦耳熱分析
論文名稱(外文):Analysis of Micromixer System and Application Joule Heating Effect in Microfluidic Chip
指導教授:蔡建雄蔡建雄引用關係
指導教授(外文):Tsai Chien-Hsiung
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:104
中文關鍵詞:微管道數值模擬混合系統焦耳熱
外文關鍵詞:MicrofluidicCFDMicromixerApplication Joule Heating Effect
相關次數:
  • 被引用被引用:1
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本文是利用數值模擬的方法,探討微混合器僅需施加一電動驅動力來驅動樣本液,並同步產生週期性之切換頻率,其不需再增添額外的能量源即可於微管道中產生不穩定的流場,且利用此一週期性切換模式對欲注入溶液進行交錯式樣本注射,亦可增加兩樣本間之接觸面積及時間,有效地提升微尺度內混合的效應。還有改變幾何形狀,藉由此方法的實施可使得流體的擺幅變大,而讓不同樣本間的接觸面積增加,有效地提高混合效能。
另外,研究中改變幾何形狀和控制電壓時等等,又發現另一種問題,哪就是焦耳熱問題。直管中熱傳遞係數的改變,驅動電壓的大小,管徑的寬度,管徑中有縮管,彎管時,熱傳遞係數的改變(也討論縮管),微管道中流體與溫度相依電導度、熱傳導性及黏度的溫度場、幾何形狀、電場、及流場需同時考慮,温度的升高,使溶液的黏度下降,电渗流增大。温度梯度(中心温度高)的形成,所產生之焦耳熱使的流場內溫度分部不均勻,與溫度相依的電傳導性與黏滯性將會使整個電場與流場隨著改變。
This paper uses the numerical simulation to discuss the phenomena that micromixer System only apply electricity to drive the sampling liquids and periodic changing frequency occurs simultaneously. Micromixer System produce unstable fluent field in micro tube without additional power supply, and apply periodic changing mode to start cross sampling injection .Upper method can increase the contacting area and time between two samples, and promotes the mixing effect of micro scale. Furthermore, changing the geometric shape greaten the swing level of the fluid, and increase the contacting area between different samples.

In addition, while changing the geometric shape and voltage in research, we find another problem which is joule heating effect. Following situations have to check simultaneously, including changing the heat transfer coefficient of the straight tube、level of the driving voltage、width of the tube inside diameter、crinkling or bending tube、differences of the heat transfer coefficient (including crinkling tube)、interdependent conductance of fluid and temperature in micro tube、temperature field of heat conductivity and viscosity、geometric shape、electric field and fluid field. Higher temperature makes lower viscosity and higher electroosmotic flow. When gradient (high temperature at center) of the temperature occurs, the creating joule heat makes the distribution of the temperature of the fluid field unequal, and the conductance、viscosity interdependent with the temperature will change the whole electric field and fluid field.
目錄
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VII
圖目錄 VIII
符號說明 XIX
第1章 前言 1
1.1 研究動機 1
1.2 文獻回顧 5
1.2.1 微流體晶片 5
1.2.2 微型混合器 8
1.2.3 焦耳熱 13
1.3 本研究內容 21
1.3.1 雙L型微流體混合器 21
1.3.2 焦耳熱的影響 22
第2章 數值模擬 23
2.1 混合系統基本假設 23
2.2 電雙層分佈之Poisson-Boltzmann方程式 24
2.3 電滲流流場之Navier-Stokes方程式 26
2.4 濃度方程式 27
2.5 邊界條件 27
2.6 考慮焦耳熱對流體之影響時 29
第3章 數值方法 31
3.1 離散化(Discretization) 31
3.2 壓力與速度(pressure-velocity coupling)之耦合算法 34
3.3 格點系統 35
3.4 收斂標準 36

第4章 結果與討論 37
4.1 雙L型微流體混合器性能分析 37
4.1.1 雙L型微流體混合器之混合情形 37
4.1.2 雙L型微流體混合器之混合效率 40
4.2 微管道中焦耳熱效應研究 51
4.2.1 管壁不同熱傳遞係數的影響 51
4.2.2 驅動電壓的影響 57
4.2.3 微管道在不同管徑下的影響 61
4.2.4 微管道中管壁上下分別用不同熱傳遞係數的
影響 66
4.2.5 微管道在不同縮管長度下的影響 72
4.2.6 微管道在不同縮管管徑下的影響 78
4.2.7 彎管的微管道管壁不同熱傳遞係數下的影響 82
4.2.8 彎且縮管的微管道管壁不同熱傳遞係數下的
影響 90
第5章 結論 97

參考文獻 99

作者簡介 104
參考文獻
1.蔡建雄、傅龍明、林哲信、許功亮 (2004) 微管道內在不同幾何形狀之障礙物混合效率分析。中國機械工程學會第二十一屆全國學術研討會,E07:1-6頁。
2.簡育生 (2005) 電驅動式微混合器及整合光鉗之細胞操控平台於生醫檢測之應用。國立中山大學機械與機電工程研究所碩士論文,71-73頁。
3.Arulanandam, S., and D. Li (2000) Determing Potential and Surface Conductance by Monitoring the Current in Electro-osmotic Flow. Journal of Colloid and Interface Science. 225:421-428.
4.Attard, P., D. Antelmi, and I. Larson (2000) Comparsion of the Zeta Potential with the Diffuse Layer Potential from Charge Titration. Langmuir. 16:1542-1552.
5.Chen, C.H., and J. G. Santiago (2002) Joule heating effects in electroosmotically driven microchannel flows. J. Microelectromech. Syst. 11:523-528.
6.Culbertson, C. T., S. C. Jacobson, and J. M. Ramsey (1998) Dispersion Source for Compact Geometries on Microchips. Analytical Chemistry. 70:3781-3789.
7.Deshmukh, D. Liepmann, and A. P. Pisano (2001) Continuous micromixer with pulsatile micropumps. IEEE Proc. solid-state sensors and actuator workshop. 73-76.
8.Deval, J., P. Tabeling, and C. M. Ho (1993) A dielectrophoretic chaotic mixer. Proc. IEEE MEMS. 36-39.
9.Dodge, A., M. C. Jullien, Y. K. Lee, X. Niu, F. Okkels, and P. Tabeling (2004) An example of a chaotic micromixer: the cross-channel micromixer. Comptes Rendus Physique. 5:557-563.
10.Erickson, D., and D. Li. Sinton (2003) Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems D. Lab on a Chip. 3:141-149.
11.Fu, L. M., R. J. Yang, and G. B. Lee (2002a) Analysis of Geometry Effects on Band Spreading of Microchip Electrophoresis. Electrophoresis. 23:602-612.
12.Fu, L. M., R. J. Yang, G. B. Lee, and H. H. Liu (2002b) Electrokinetic Injection Techniques in Microfluidic Chips. Analytical Chemistry. 74:5084-5091.
13.Gobie, W. A., and C. F. Ivory (1990) Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening. J. Chromatography B. 516:191-210.
14.Gouy, G. (1910) Constitution of the Electric Charge at the Surface of an Electrolvet. Journal of Physics, Chem. 9:457-468.
15.Harrison, D. J., A. Manz, Z. Fan, and H. Ludi (1992) Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Analytical Chemistry. 64:1926-1932.
16.Hong, C., J. W. Choi, and C. H. Ahn (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab on a Chip. 4 :109-113.
17.Horiuchi, K., and P. Dutta (2004) Joule heating effects in electroosmotically driven microchannel flows Int. J. Heat Mass Trans. 47:3085-3095.
18.Knox, J.H. (1988) Thermal effects and band spreading in capillary electro-separation J. Chromatography A. 26:329-335.
19.Knox, J. H., and K.A. McCormack (1994) Temperature Effects in Capillary Electrophoresis. J. Chromatography A. 38:207-214.
20.Lee,C. Y., G. B. Lee, L. M. Fu, K. H. Lee, and R. J. Lee (2004) Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect. Journal of Micromechanics and Microengineering. 14:1390-1398.
21.Liu, R. H., M. A. K. Stremler, V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe (2000) Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectro-mechanical Systems. 9:190-197.
22.Lu, L. H., K. S. Ryu, and C. Liu (2002) A magnetic microstirrer and array for microfluidic mixing. Journal of Microelectromechanical Systems. 11: 462-469.
23.Manz, A., N. Graber, and H. M. Widmer (1990) Miniaturized Total Chemical Analysis systems: A Novel Concept for Chemical Sensing. Sensors and Actuators. B1:244-248.
24.Paegel, B. M., L. D. Hutt, P. C. Simpson, and R. A. Mathies (2000) Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels. Analytical Chemistr. 72:3030-3037.
25.Petersen, N. J., R. P. H. Nikolajsen, K. B. Mogensen, and J. P. Kutter (2004) Effect of Joule heating on efficiency and performance for microchip-based and capillarybased electrophoretic separation systems:A closer look. Electrophoresis. 25:253-269.
26.Ross, D., M. Gaitan, and L. E. Locascio (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye Anal. Chem. 73:4117-4123.
27.Seiler, K., D. J. Harrison, and A. Manz (1993) Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, Separation Efficiency. Analytical Chemistry. 65:1481-1488.
28.Sinton, D., and D. Li (2003) Electroosmotic velocity profiles in microchannels. Colloids and Surfaces A. 222:273-283.
29.Swinney, K., and D. J. Bornhop (2002) Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis. 23:613-620.
30.Tang, G. Y., C. Yang, J. C. Chai, and H. Q. Gong (2003) Modeling of Electoosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect: the Nernst-Planck Equation versus the Boltzmann Distribution. Langmuir. 19:10975-10984.
31.Tang, G. Y., C. Yang, J. C. Chai, and H. Q. Gong (2004) Joule Heating Effect on Electroosmotic Flow and Mass Species Transport. International Journal of Heat Mass Trans. 47:215-227.
32.Tiselius, A. (1937) A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures. Trans. Faraday Soc. 33:524.
33.Tsai, C. H., C. H. Tai, L. M. Fu, and F. B. Wu (2005) Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems. Journal of Micromech and Microeng. 15:377-385.
34.Voldman, J., M. L. Gray, and M. A. Schmidt (2000) An integrated liquid mixer/valve. Journal of Microelectromechanical Systems. 9:295-302.
35.Wang, Y., Q. Lin, and T. Mukherjee (2004) A model for Joule heating-induced dispersion in microchip electrophoresis. Lab on a Chip. 4:625-631.
36.Wei, W., and E. S. Yeung (2001) DNA capillary electrophoresis in entangled dynamic polymers of surfactant molecules. Anal. Chem. 73:1776-1783.
37.West, J., E. Hurleya, N. Corderoa, J. K. Collinsb, W. Lanea, and H. Berneya (2004) Accessing DNA by low voltage alternating current Joule effect heating. Analytica Chimica Acta. 527:1-12.
38.Xuan, X., B. Xu, and D. Li. Sinton (2004) Electroosmotic flow with Joule heating effects D.Lab on a Chip. 4:230-236.
39.Xuan, X. D., and D. Li. Sinton (2004) Thermal end effects on electroosmotic flow in a capillary. Int. J. Heat Mass Trans. 47:3145-3157.
40.Yang, R. J., L. M. Fu, and C. C. Hwang (2001) Electroosmotic Entry Flow in a Microchannel. Journal of Colloid and Interface Science. 244:173-179.
41.Yaralioglu, G. G., I. O. Wygant, T. C. Marentis, and B. T. Khuri-Yakub (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical Chemistry. 76:3694–3698.
42.Hunter, R. J. (1981) Zeta Potential in Colloid Science: Principles and Applications. Academic Press. New York.
43.Incropera, F. P., and D.P. DeWitt (1990) Fundamentals of Heat and Mass Transfer. Wiley. New York.
44.Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow. McGraw-Hill. New York.
45.Probstein, R. F. (1994) Physicochemical Hydrodynamics: An Introduction. John Wiley and Sons. 2nded. New York.
46.Russel, W. B., D. A. Saville, and W. R. Schowalter (1989) Colloidal Dispersions, Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top