參考文獻
1.蔡建雄、傅龍明、林哲信、許功亮 (2004) 微管道內在不同幾何形狀之障礙物混合效率分析。中國機械工程學會第二十一屆全國學術研討會,E07:1-6頁。
2.簡育生 (2005) 電驅動式微混合器及整合光鉗之細胞操控平台於生醫檢測之應用。國立中山大學機械與機電工程研究所碩士論文,71-73頁。3.Arulanandam, S., and D. Li (2000) Determing Potential and Surface Conductance by Monitoring the Current in Electro-osmotic Flow. Journal of Colloid and Interface Science. 225:421-428.
4.Attard, P., D. Antelmi, and I. Larson (2000) Comparsion of the Zeta Potential with the Diffuse Layer Potential from Charge Titration. Langmuir. 16:1542-1552.
5.Chen, C.H., and J. G. Santiago (2002) Joule heating effects in electroosmotically driven microchannel flows. J. Microelectromech. Syst. 11:523-528.
6.Culbertson, C. T., S. C. Jacobson, and J. M. Ramsey (1998) Dispersion Source for Compact Geometries on Microchips. Analytical Chemistry. 70:3781-3789.
7.Deshmukh, D. Liepmann, and A. P. Pisano (2001) Continuous micromixer with pulsatile micropumps. IEEE Proc. solid-state sensors and actuator workshop. 73-76.
8.Deval, J., P. Tabeling, and C. M. Ho (1993) A dielectrophoretic chaotic mixer. Proc. IEEE MEMS. 36-39.
9.Dodge, A., M. C. Jullien, Y. K. Lee, X. Niu, F. Okkels, and P. Tabeling (2004) An example of a chaotic micromixer: the cross-channel micromixer. Comptes Rendus Physique. 5:557-563.
10.Erickson, D., and D. Li. Sinton (2003) Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems D. Lab on a Chip. 3:141-149.
11.Fu, L. M., R. J. Yang, and G. B. Lee (2002a) Analysis of Geometry Effects on Band Spreading of Microchip Electrophoresis. Electrophoresis. 23:602-612.
12.Fu, L. M., R. J. Yang, G. B. Lee, and H. H. Liu (2002b) Electrokinetic Injection Techniques in Microfluidic Chips. Analytical Chemistry. 74:5084-5091.
13.Gobie, W. A., and C. F. Ivory (1990) Thermal model of capillary electrophoresis and a method for counteracting thermal band broadening. J. Chromatography B. 516:191-210.
14.Gouy, G. (1910) Constitution of the Electric Charge at the Surface of an Electrolvet. Journal of Physics, Chem. 9:457-468.
15.Harrison, D. J., A. Manz, Z. Fan, and H. Ludi (1992) Capillary Electrophoresis and Sample Injection Systems Integrated on a Planar Glass Chip. Analytical Chemistry. 64:1926-1932.
16.Hong, C., J. W. Choi, and C. H. Ahn (2004) A novel in-plane passive microfluidic mixer with modified Tesla structures. Lab on a Chip. 4 :109-113.
17.Horiuchi, K., and P. Dutta (2004) Joule heating effects in electroosmotically driven microchannel flows Int. J. Heat Mass Trans. 47:3085-3095.
18.Knox, J.H. (1988) Thermal effects and band spreading in capillary electro-separation J. Chromatography A. 26:329-335.
19.Knox, J. H., and K.A. McCormack (1994) Temperature Effects in Capillary Electrophoresis. J. Chromatography A. 38:207-214.
20.Lee,C. Y., G. B. Lee, L. M. Fu, K. H. Lee, and R. J. Lee (2004) Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect. Journal of Micromechanics and Microengineering. 14:1390-1398.
21.Liu, R. H., M. A. K. Stremler, V. Sharp, M. G. Olsen, J. G. Santiago, R. J. Adrian, H. Aref, and D. J. Beebe (2000) Passive mixing in a three-dimensional serpentine microchannel. Journal of Microelectro-mechanical Systems. 9:190-197.
22.Lu, L. H., K. S. Ryu, and C. Liu (2002) A magnetic microstirrer and array for microfluidic mixing. Journal of Microelectromechanical Systems. 11: 462-469.
23.Manz, A., N. Graber, and H. M. Widmer (1990) Miniaturized Total Chemical Analysis systems: A Novel Concept for Chemical Sensing. Sensors and Actuators. B1:244-248.
24.Paegel, B. M., L. D. Hutt, P. C. Simpson, and R. A. Mathies (2000) Turn Geometry for Minimizing Band Broadening in Microfabricated Capillary Electrophoresis Channels. Analytical Chemistr. 72:3030-3037.
25.Petersen, N. J., R. P. H. Nikolajsen, K. B. Mogensen, and J. P. Kutter (2004) Effect of Joule heating on efficiency and performance for microchip-based and capillarybased electrophoretic separation systems:A closer look. Electrophoresis. 25:253-269.
26.Ross, D., M. Gaitan, and L. E. Locascio (2001) Temperature measurement in microfluidic systems using a temperature-dependent fluorescent dye Anal. Chem. 73:4117-4123.
27.Seiler, K., D. J. Harrison, and A. Manz (1993) Planar Glass Chips for Capillary Electrophoresis: Repetitive Sample Injection, Quantitation, Separation Efficiency. Analytical Chemistry. 65:1481-1488.
28.Sinton, D., and D. Li (2003) Electroosmotic velocity profiles in microchannels. Colloids and Surfaces A. 222:273-283.
29.Swinney, K., and D. J. Bornhop (2002) Quantification and evaluation of Joule heating in on-chip capillary electrophoresis. Electrophoresis. 23:613-620.
30.Tang, G. Y., C. Yang, J. C. Chai, and H. Q. Gong (2003) Modeling of Electoosmotic Flow and Capillary Electrophoresis with the Joule Heating Effect: the Nernst-Planck Equation versus the Boltzmann Distribution. Langmuir. 19:10975-10984.
31.Tang, G. Y., C. Yang, J. C. Chai, and H. Q. Gong (2004) Joule Heating Effect on Electroosmotic Flow and Mass Species Transport. International Journal of Heat Mass Trans. 47:215-227.
32.Tiselius, A. (1937) A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures. Trans. Faraday Soc. 33:524.
33.Tsai, C. H., C. H. Tai, L. M. Fu, and F. B. Wu (2005) Experimental and numerical analysis of the geometry effects of low-dispersion turns in microfluidic systems. Journal of Micromech and Microeng. 15:377-385.
34.Voldman, J., M. L. Gray, and M. A. Schmidt (2000) An integrated liquid mixer/valve. Journal of Microelectromechanical Systems. 9:295-302.
35.Wang, Y., Q. Lin, and T. Mukherjee (2004) A model for Joule heating-induced dispersion in microchip electrophoresis. Lab on a Chip. 4:625-631.
36.Wei, W., and E. S. Yeung (2001) DNA capillary electrophoresis in entangled dynamic polymers of surfactant molecules. Anal. Chem. 73:1776-1783.
37.West, J., E. Hurleya, N. Corderoa, J. K. Collinsb, W. Lanea, and H. Berneya (2004) Accessing DNA by low voltage alternating current Joule effect heating. Analytica Chimica Acta. 527:1-12.
38.Xuan, X., B. Xu, and D. Li. Sinton (2004) Electroosmotic flow with Joule heating effects D.Lab on a Chip. 4:230-236.
39.Xuan, X. D., and D. Li. Sinton (2004) Thermal end effects on electroosmotic flow in a capillary. Int. J. Heat Mass Trans. 47:3145-3157.
40.Yang, R. J., L. M. Fu, and C. C. Hwang (2001) Electroosmotic Entry Flow in a Microchannel. Journal of Colloid and Interface Science. 244:173-179.
41.Yaralioglu, G. G., I. O. Wygant, T. C. Marentis, and B. T. Khuri-Yakub (2004) Ultrasonic mixing in microfluidic channels using integrated transducers. Analytical Chemistry. 76:3694–3698.
42.Hunter, R. J. (1981) Zeta Potential in Colloid Science: Principles and Applications. Academic Press. New York.
43.Incropera, F. P., and D.P. DeWitt (1990) Fundamentals of Heat and Mass Transfer. Wiley. New York.
44.Patankar, S. V. (1980) Numerical Heat Transfer and Fluid Flow. McGraw-Hill. New York.
45.Probstein, R. F. (1994) Physicochemical Hydrodynamics: An Introduction. John Wiley and Sons. 2nded. New York.
46.Russel, W. B., D. A. Saville, and W. R. Schowalter (1989) Colloidal Dispersions, Cambridge Monographs on Mechanics and Applied Mathematics. Cambridge University Press, Cambridge.