跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/15 04:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王土發
研究生(外文):Tu-Fa Wang
論文名稱:具線上檢測能力之微阻銲系統開發
論文名稱(外文):Department of Vehicle Engineering, National Pingtung University of Science and Technology.
指導教授:曾全佑曾全佑引用關係陳永昌陳永昌引用關係
指導教授(外文):Chyuan-Yow TsengYoung-Chang Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:車輛工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:50
中文關鍵詞:微電阻銲微接合品質監測類神經網路
外文關鍵詞:Micro resistance weldingMonitoringmicro-joints
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
微電阻銲(micro resistance welding)屬於微接合(micro-joining)領域中之一種薄金屬接合方法,被廣泛應用於汽車電子、光電元件封裝、醫工元件、感測器等工業上,具有生產快速及低營業成本之優點,非常適合大量生產。但在實際生產線上,至今仍缺乏非破壞性之線上檢測技術,無法非常精確及時監測銲接之品質,導致銲件之不良率偏高。因此,本文主要目標為建立一套微電阻點銲實驗系統,並發展其線上檢測技術,以即時監測銲接品質。
利用所發展之系統於0.1594mm鐵鈷鎳合金(KOVAR)及0.1mm不鏽鋼等材料銲接時,由銲接過程之動態資料,並經過拉伸實驗驗證銲接品質之銲點抗拉強度資料,經參數相關性分析後,發現最大電極位移量及最低動態電阻兩項參數與最大破壞拉力之相關係數分別為0.9161及-0.8808,顯示兩參數與銲點強度間之相關性非常高。將兩參數匯入類神經網路建立之品質監測模組,對類神經網路進行銲接品質判斷訓練,測試該神經網路之預測能力。
本研究利用類神經網路所建立之品質監測模組,可依照銲點之應用強度需求,設定銲點之強度分類等級進行分類。在鐵鈷鎳合金材料檢測部分,將銲接品質分為良好及不良兩類,其預測準確度高達100%。另外在不鏽鋼部分依照銲接之數據,區分成三個強度等級,包括不良、良好及最佳等三個等級,經測試其判斷銲接品質準確度高達93%,測試結果顯示本系統可精確預測銲點之強度。
本系統可依需求設定不同之銲接強度分類標準,將可實際應用在線上之銲接品質監控,得到即時之銲接品質資訊。未來將資訊應用在銲接系統控制上,將可得到更穩定之銲接品質。
Micro-resistance spot welding (MRSW) is a group of micro-joining processes in which micro-joints are formed between two sheets by resistance heating caused by the passage of electric current. These processes are commonly applied to the weld of auto electrical components, and micro-electrical components, and medical packing. Because of its many advantages such as high manufacturing speed and low cost, the MRSW is very suitable for industrial mass-production applications.
Surprisingly, there is no satisfactory non-destructive on line monitoring systems to assure the quality of the welding process. This thesis is aimed to develop a MRSW equipment and its associated monitoring system that can predict the welding quality during the welding process.
The thesis was preceded by designing an experimental test rig for the MRSW. Then a series of experiments were carried out to find the key parameters that can feature the welding quality. Experiments have shown that the values of the maximum electrode displacement and minimum dynamic resistance of a joint relate its welding quality quite well. Using these two parameters, a neural network based on-line welding quality monitor was developed.
The developed quality monitor system has been successfully applied to the welds of 0.1mm stainless steel and 0.1594mm KOVAR sheets, respectively. In the experiments, the achieved success rates in the two-class welding quality classification for the KOVAR sheets was 100% whilst the three-class classification for the stainless steel sheets was 93%.
The results show that the proposed MRSW monitor system processes an excellent accuracy in predicting the quality of a welding joint in terms of the tensile strength.
The developed monitoring system has the advantage of easy implementation in the field.
Table of Contents
摘要......................................................................................................... Ⅰ
Abstract................................................................................................... Ⅲ
誌謝........................................................................................................ Ⅴ
Table of Contents.................................................................................... Ⅵ
List of Figure........................................................................................... Ⅷ
List of Table............................................................................................ Ⅹ
Chapter 1 Introduction............................................................................ 1
1.1 Background................................................................................. 1
1.2 Motivation................................................................................... 3
1.3 Literature review......................................................................... 5
1.4 Thesis arrangement..................................................................... 7
Chapter 2 Design of the Test Rig............................................................ 8
2.1 .Design of welding stand............................................................. 10
2.2 Design of current controller........................................................ 12
2.3 Tensile strength tester................................................................. 15
2.4 Characteristics of the MRSW..................................................... 17
Chapter 3 The Weld of KOVAR............................................................. 20
3.1 Welding quality estimation …………….................................... 20
3.2 Experimental results................................................................... 26
Chapter 4 The Weld of Stainless Steel................................................... 31
4.1 Welding quality estimation......................................................... 31
4.2 Experimental results.................................................................... 35
Chapter 5 Conclusions and Remarks...................................................... 41
Reference................................................................................................ 43
Appendix A The Neural Network........................................................... 47
Biosketch of Author................................................................................ 50
1. Brown, Lyndon J., and J. S. Schwaber (2000) Identifying operating conditions from pre-weld information for resistance spot welding. Proceedings of American Control Conference, 1.3: 1535 –1539.
2. Chen, Xingqiao, and Araki Kenji (1997a) Fuzzy adaptive process control of resistance spot welding with a current reference model. IEEE International Conference on Intelligent Processing Systems,1:190-194.
3. Chen, Xingqiao, Araki Kenji, and Mizuno Takeshi (1997b) Modeling and fuzzy control of the resistance spot welding process. Proceedings of the 36th SICE Annual Conference, International Session Papers, 29-31:989-994.
4. Cho, Yongjoon, and Sehun Rhee (2004) Quality estimation of resistance spot welding by using pattern recognition with neural network. IEEE Transactions on Instrumentation and Measurement, 53:330-334.
5. Dhandapani, Siva, Bridges Michael, and Elijah Kannatey-Asibu Jr. (1999) Nonlinear electrical modeling for the resistance spot welding process. Proceedings of the 1999 American Control Conference, 1:182 –186.
6. Dong, S.J., G.P Kelkar., and Y. Zhou (2002) Electrode sticking during micro-resistance welding of thin metal sheets. IEEE Transactions on Electronics Packaging Manufacturing, 25:355-361.
7. Garza, F. J., and M. Das (2000) Identification of time-varying resistance during welding. Proceedings of the 17th IEEE on Instrumentation and Measurement Technology Conference, 3:1534-1539.
8. Garza, Frank, and Manohar Das (2001) On real time monitoring and control of resistance spot welds using dynamic resistance signatures. Proceedings of the 44th IEEE 2001 Midwest Symposium on Circuits and Systems, 1:41-44.
9. Ivezic, Nenad, John D. Alien Jr., and Thomas Zacharia (1999) Neural network-based resistance spot welding control and quality prediction. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials, 2:989 –994.
10. Jose, C. Principe, R. Euliano Neil, and W. Curt Lefebvre (1999) Neural and adaptive systems. John Wiley and Sons INC.
11. Jou, Min, and Robert W. Messler Jr. (1995) A review of control systems for resistance spot welding: past and present practices and emerging trends. Welding Journal, 12:121-131.
12. Jou, Min (2003) Real time monitoring weld quality of resistance spot welding for the fabrication of sheet metal assemblies. Journal of materials processing technology, 132:102-113.
13. Jun, Seo-Moon, Gyu-Sik Kim, Jae-Mun Kim, and Chung-Yuen Won (1997) Power control of resistance spot welding system with high dynamic performance. 23th International Conference on Industrial Electronics, 2:845-849.
14. Lee, Sang Ryong, YoonJun Choo, TaeYoung Lee, ChangWoo Han, and MyunHee Kim (2000) Neuro-fuzzy algorithm for quality assurance of resistance spot welding. IEEE Conference on Industry Applications, 12:1210-1216
15. Lee, Yung-Li, and Ming-Wei Lu (1999) Fatigue-reliability analysis of resistance spot-welds. Proceedings of Reliability and Maintainability, 24-27:178-184.
16. Li, Wei (2005) Modeling and on-line estimation of electrode wear in resistance spot welding. Journal of manufacturing science and engineering, 127:709-717.
17. Messler, R. W. Jr., Min Jou, and C.J. Li (1995) An intelligent control system for resistance spot welding using a neural network and fuzzy logic. IEEE 1995 Conference on Industry Applications, 2:1757-1763.
18. Shriver, J., Huei Peng, and S.J. Hu (1999) Control of resistance spot welding. Proceedings of the 1999 American Control Conference, 1:187 –191.
19. Soo, Woong Park, and Suck Joo Na (1990) A new current measurement method in resistance spot welding. IEEE Transactions on Instrumentation and Measurement, 39:767-772.
20. Wang, S. C., and P. S. Wei (2001) Modeling dynamic electrical resistance during resistance spot welding. Transactions of the ASME, 123:576-585.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 劉莉君〈論〈左傳〉之文學特色〉,《孔孟月刊》第二十卷第一期,頁39-41。
2. 單周堯〈香港大學《左傳》學研究概述〉,《中國文哲研究通訊》,8:4,頁145-184,1998.12。
3. 陳瑞芬〈《左傳》、《史記》、《戰國策》之史學價值語文學特性舉隅〉,《藝術學報》第56期,頁313-329,1995.6。
4. 粘振和〈《春秋》義法與亂世臣節--以大楚政權(AD1126)君臣反應為主的探討(上)〉,《修平學報》第七期,頁223-247,2003.9。
5. 陳金木〈重讀《史記•孔子世家》〉,《國文學誌》第六期,頁17-26,2002.12 。
6. 陽平南〈《春秋》書法與小說評論──以明代小說序跋為例〉,《筧橋學報》第七期,1990.9。
7. 林翠芬《司馬遷的文學觀》,《雲林工專學報》第十期,頁203-213。
8. 徐文珊〈試為司馬遷〈史記〉撰擬史例〉,《中國歷史學會史學集刊》第五期,頁19-26。
9. 郭瓊瑜〈〈史記〉述〈周易〉探微〉,《中國學術年刊》第二十二期,頁33-55。
10. 余昭玟〈〈史記〉與當前的報導文學〉,《雲漢學刊》第七期,頁255-269。
11. 張玉芳〈論《史記》的論斷方式〉,《中國文學研究》第十四期,頁81—86,2000.5。
12. 王惠姬〈〈史記〉對女性形象的刻畫〉,《中正歷史學刊》第3期,頁81-138,2000。
13. 賴芳玉〈談《史記》中的卜筮〉,台北師範學院《傳習》第17期,頁89-100,1999.4。
14. 李毓善〈史記中的相〉,收於《輔仁國文學報》第五集,頁1-62,1989.6。
15. 潘光晟〈史記釋例〉,《中華學苑》第十七期,頁109,1976。