跳到主要內容

臺灣博碩士論文加值系統

(3.234.211.61) 您好!臺灣時間:2021/10/18 19:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:戴士傑
研究生(外文):Shih-Chieh Tai
論文名稱:焦糖化產物的特性及其與酚類交聯程度之探討
論文名稱(外文):The characteristics of caramelization products (CPs) and its cross-linkage with phenolic compounds
指導教授:蔡碧仁
指導教授(外文):Pi-jen Tasi
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:100
中文關鍵詞:焦糖化抗氧化力酚類交聯
外文關鍵詞:caramelizationphenolic compoundscross-linkageantioxidant capacity
相關次數:
  • 被引用被引用:3
  • 點閱點閱:867
  • 評分評分:
  • 下載下載:176
  • 收藏至我的研究室書目清單書目收藏:2
焦糖化反應是非酵素性褐變的一種,所生成的物質稱為焦糖化產物(caramelization products, CPs)。然在不同反應條件下,產生的焦糖化產物並不相同,其基本特性也有所差異。本試驗研究目的針對糖種類(蔗糖、葡萄糖、果糖、木糖)及pH值(pH 3, pH 7, pH 10),探討焦糖化反應產物的基本特性;並就醣類與酚類物質(兒茶素、漂木酸、阿魏酸)作用所產生的交聯鍵結複合物加以分析,以了解其鍵結關係與抗氧化力。結果顯示,單醣(葡萄糖、果糖、木糖)在鹼性環境下,具有較多的褐色物質生成,於加熱第12個小時便達到最大量。抗氧化力表現方面,分別以pH 10下之果糖,加熱42小時後,還原能力(FRAP)最高(約2500μmole/l);DPPH清除能力則以pH 7下加熱42小時之木糖最高(約98.2%)。氫提供能力、pH值變化及焦糖化起始反應速率,則以pH 10之單糖(尤其木糖者)表現較佳。
統計分析顯示,UV可吸收性物質與褐色物質及抗氧化力三者間,單醣在鹼性下有較多的正相關性;蔗糖則在酸性下,相關性較高。此與形成焦糖產物之速率及生成量有關。凡焦糖褐色產物多者,抗氧化力愈強。
進一步探討醣類與酚類之交聯的作用,結果顯示,醣類與酚類共同加熱時,僅有醣類與兒茶素,經過加熱後有交聯沉澱物產生,而漂木酸及阿魏酸並未與醣類產生交聯。似乎能與醣類產生交聯者,以具有C6C3C6結構之酚類化合物的可能性最大。而產生交聯者其抗氧化力有明顯提高。以1%果糖與0.05%兒茶素共同加熱者而言,FRAP還原能力由2101.6μmole/l增加到3562μmole/l;DPPH清除能力則在10%蔗糖和0.5%漂木酸共同加熱後,由2.13%提高至61.41%。醣類與酚類鍵結方面,以10%果糖和0.5%兒茶素鍵結程度最高,約達81%。且經由分子篩過濾可證實,其為醣類-兒茶素之複合物。
若將未受熱的酚類添加在果糖與蔗糖之焦糖產物中,觀察焦糖與酚類是否有直接作用,結果顯示均無沉澱之產生。濃度0.5%的兒茶素添加10%醣類之焦糖產物者,FRAP還原力雖未有加乘作用,但約為二者之和,其FRAP還原力為此部分樣品中最強者。DPPH清除能力則有明顯的加乘作用,以0.05%阿魏酸添加1%果糖之焦糖產物者為例,DPPH清除能力在經過作用後激增為93.72%,為樣品中最高者。經由HPLC分析酚類含量顯示,0.05%兒茶素與1%蔗糖之焦糖化產物完全作用而無殘留,鍵結達100%。漂木酸亦有類似結果。
綜合以上可得知,單醣類於鹼性下進行焦糖化反應所產生之焦糖化產物,其抗氧化能力、起始反應速率等特性皆為最佳;而蔗糖則是在酸性環境下表現較佳。經過模擬醣-酚交聯後發現,可產生交聯複合沉澱物者,其抗氧化力確實有提高的趨勢。
Caramelization is one of nonenzymatic browning, which produces the substances called caramelization products (CPs). However, the characteristics of different CPs are not the same at different conditions. The aim of this study is to elucidate the effects of sugars (sucrose, glucose, fructose, xylose) and pH (pH 3, pH 7, pH 10) on the properties of CPs. Furthermore, the antioxidant capacity as well as degree of binding of the binding complex between phenolic compounds (catechin, chlorogenic acid, ferulic acid, anthocyanins) and CPs were analyzed. Results showed that, brown CPs produced from monosaccharide was more evident at pH 10 than at pH 3, and reached the maximum amount after being heated for 12 hours. For the antioxidant capacity, fructose and xylose showed the highest FRAP (2500μmole/l) and DPPH scavenging ability (98.2%) after being heated at pH 10 or pH 7 for 42 hours, respectively. The H-donating ability of CPs from monosaccharide heated for 42 hours was approximately 2.5 folds greater than that of control. During heating, pH value of xylose dropped from pH 10 to pH 5.49. The initial reaction rate of caramelization was greater at pH 10 than that at pH 3 for monosaccharide. While for sucrose, higher rate was found on pH 3.
Correlation analysis among UV-absorbing, browning products and antioxidant capacity showed that, monosaccharide showed higher positively correlation coefficient under alkaline condition while sucrose was higher under acidic condition. Which is also connected with the formation rate of caramel. The more the caramel the higher antioxidant.
In the sugars-phenolics model system, results showed that, cross-linkage formation occurred between catechin and sugars after heating, but not for chlorogenic acid and ferulic acid. It seems that, phenolic compounds with C6C3C6 structure showed higher tendency to cross-linkage with sugars than phenolic acid. For antioxidant capacity analysis, model system with cross-linkage formation exhibited the distinct enhancement of FRAP reducing power. For example, system of 1% fructose and 0.05% catechin increases FRAP reducing power from 2101.6μmole/l to 3562μmole/l after heating. As to DPPH scavenging ability, the cross-linkage formation of catechin and chlorogenic acid with sugars also showed the obvious enhancement. In the 10% sucrose and 0.5% chlorogenic acid system DPPH scavenging ability increase from 2.13% to 61.41% after heating. System of 10% fructose and 0.5% catechin showed the highest degree of binding between phenol and sugar (81%). The binding complex was further confirmed by gel filtration. In the CPs-phenolics model system, there is no precipitation in the system of phenolics and CPs. The 0.5% catechin and 10% sugars system showed the strong FRAP reducing power although there was no synergetic effect. System of 0.05% ferulic acid and CPs of 1% fructose showed the highest DPPH scavenging ability (93.72%) with obvious synergetic effect. HPLC analysis confirmed that the binding between 0.05% catechin and caramel from 1% sucrose was almost 100%. Chlorogenic acid exhibited the same tendency.
In conclusion, the antioxidant capacity and reaction rate of the CPs of monosaccharide under pH 10 are better than that at pH 3 and 7. But sucrose under pH 3 is better than that of pH 7 and 10. The antioxidant capacity increased in CPs-phenolics model system after complex formation.
目錄

中文摘要……………………………………………………………………… I
Abstract……………………………………………………………………… III
誌謝…………………………………………………………………………… V
目錄…………………………………………………………………………… VI
圖表目錄……………………………………………………………………… VIII
第1章 前言………………………………………………………………… 1
第2章 文獻回顧…………………………………………………………… 3
2.1 焦糖化反應…………………………………………………… 3
2.1.1 焦糖化反應特性………………………………………… 3
2.1.2 影響焦糖化反應之因子………………………………… 8
2.1.3 焦糖產物在食品上的應用……………………………… 11
2.2 酚類的交聯作用……………………………………………… 15
2.2.1 酚類化合物簡介………………………………………… 15
2.2.2 酚類的抗氧化能力……………………………………… 20
2.2.3 酚類與蛋白質交聯作用………………………………… 20
2.2.4 酚類化合物與醣類之交聯作用………………………… 21
2.3 焦糖與酚類化合物之交聯作用……………………………… 23
2.3.1 桑椹色素與蔗糖模擬系統……………………………… 23
2.3.2與漂木酸作用…………………………………………… 23
第3章 材料與方法………………………………………………………… 26
3.1 試驗藥品……………………………………………………… 26
3.2 試驗儀器……………………………………………………… 26
3.3 試驗流程與方法……………………………………………… 27
3.3.1 焦糖化產物之製備與特性之探討……………………… 27
3.3.2 焦糖-酚類複合物之製備與分析流程………………… 29
3.4 試驗分析項目………………………………………………… 32
3.4.1 抗氧化能力分析………………………………………… 32
3.4.2 色澤相關特性之分析…………………………………… 33
3.4.3 pH值測定………………………………………………… 34
3.4.4 起始反應速率…………………………………………… 34
3.4.5 焦糖-酚類交聯複合物純化與分析…………………… 34
3.5 統計分析…………………………………………………… 35
第4章 結果與討論………………………………………………………… 36
4.1 焦糖化產物特性之探討……………………………………… 36
4.1.1 UV可吸收性物質………………………………………… 36
4.1.2 褐色強度………………………………………………… 41
4.1.3 UV可吸收性物質與褐色聚合物吸光值之比值(RUV/brown)
…………………………………………………………… 45
4.1.4 抗氧化能力……………………………………………… 49
4.1.5 pH值變化………………………………………………… 55
4.1.6 起始反應速率…………………………………………… 55
4.1.7 焦糖品質相關性分析…………………………………… 58
4.2 模擬系統下,酚類與焦糖交聯複合物特性之探討………… 63
4.2.1 醣與酚類同時加熱……………………………………… 63
4.2.2 酚類與焦糖產物在室溫下進行交聯…………………… 81
第5章 結論………………………………………………………………… 88
參考文獻……………………………………………………………………… 90
作者簡介…………………………………………………………………………100
參考文獻

王傳淑。差向異構化[中文詞條]。2006年6月12日,取自「中國大百科全書智慧藏」:http://210.240.193.70/xency/Content.asp?ID=45539

吳曉琪。2001。不同品系及生長季節之狼尾草抗氧化活性的探討。屏東科技大學食品科學系碩士論文。

林文華。2000。蜂膠中酚類化合物之組成與特性。中山醫學院營養科學研究所碩士論文。

林靜宜。2001。巴斯德殺菌芒果汁求最適溫度與時間之探討。國立屏東科技大學食品科學系碩士論文。

施千惠。2004。酚類對豌豆超氧化歧化酶之耐熱活性及其鍵結程度影響之探討。國立屏東科技大學食品科學研究所碩士論文。

高欽煌。2001。花生成分對蔗渣纖維分解之定性定量分析。逢甲大學化學工程研究所碩士論文。

高毓翎。2003。以焙烤方式製造龍眼香甜酒之研究。國立台灣大學食品科技研究所碩士論文。

陳文賢。2004。水活性控制與食品儲存。科學發展379: 22-3。

張為憲、李敏雄、呂政義、張永和、陳昭雄、孫璐西、陳怡宏、張基郁、顏國欽、林志城、林慶文。2001。食品化學。華香園出版社。

張昶郁。2002。寡木糖之化學安定性及吸濕性與對玉米脆片物性之影響。靜宜大學食品營養研究所碩士論文。

黃小萍。2002。花青素聚合度與抗氧化能力關係之研究。國立屏東科技大學食品科學系碩士論文。

黃愉婷。2005。與酚類共色對花青素穩定性及抗氧化性之影響。國立屏東科技大學食品科學研究所碩士論文。

劉佳容。2005。酚類對番石榴蜜餞質地之影響及其與果膠質交聯程度之探討。國立屏東科技大學食品科學研究所碩士論文。

劉家宏。2004。利用超臨界二氧化碳萃取與純化茶葉中之兒茶素。長庚大學化工暨材料工程研究所碩士論文。

練懿珊。1998。不同糖類對大豆蛋白梅納凝膠反應形成效果的影響。國立中興大學食品科學研究所碩士論文。

Ajandouz EH, Puigserver A. 1999. Nonenzymatic browning reaction of essential of amino acids: Effect of pH on caramelization and maillard reaction kinetics. Journal of Agricultural and Food Chemistry 47: 1786-93.

Ajandouz EH, Tchiakpe LS, Ore FD, Benajiba A, Puigserver A. 2001. Effects of pH on caramelization and maillard reaction kinetics in fructose-lysine model systems. Journal of Food Science 66: 926-31.

Andueza S, Cid C, Nicoli MC. 2004. Comparison of antioxidant and pro-oxidant activity in coffee beverages prepared with conventional and “Torrefacto” coffee. Lebensm-wiss. u.-Technol. 37: 893-97.

Bandoniene D, Murkovic M. 2002. The detection of radical scavenging compounds in crude extract of borage (Borago officinalis L.) by using an on-line HPLC-DPPH method. Journal of biochemical and biophysical methods 53: 45-9.

Bartolome B, Estrella I, Hernandez MT. 2000. Interaction of low molecular weight phenolic with proteins (BSA). Journal of Food Science 65(4): 617-21.

Benjakul S, Visessanguan W, Phongkanpai V, Tanaka M. 2005. Antioxidative activity of caramelization products and their preventive effect on lipid oxidation in fish mince. Food Chemistry 90: 231-9.

Bros H, Chillard J, Cillard P, Rahmani M. 1990. Flavonoids as antiosidants: determination of radical scavenging efficiencies. Methods Enzymol. 186: 343-55.

Carnachan SM, Harris PJ. 2000. Ferulic acid is bound to the primary cell walls of gymnosperm families. Biochemical Systematics and Ecology 28: 865-79.

Carrasco A, Siebert KJ. 1999. Visual perception of haze. Food Technology 53(1): 50-2.

Deutsch MJ. 1984. Vitamins and other nutrients. In: Williams S. Official methods of analysis. The association of official analytical chemists p844-5.

Faraji H, Lindsay C. 2005. Antioxidant protection of bulk fish oils by dispersed sugars and polyhydric alcohols. Agricultural and Food Chemistry 53: 736-44.

Farine S, Villard C, Moulin A, Marchis Mouren G, Puigserver A. 1997. Comparative quantitative analysis of sucrose and related compounds using ion exchange and reverse phase chromatographic methods. International Journal of Biological Macromolecules 21: 109-14.

Freitas VD, Mateus N. 2001. Structural features of procyanidin interactions with salivary protein. Agricultural and Food Chemistry 49: 940-5.

Forni E, Sormani A, Scalise S, Torreggiani D. 1997. The influence of sugar composition on the colour stability of osmodehydrofrozen intermediate moisture apricots. Food Research International 30: 87-94.

Garza S, Ibarz A, Pagan J, Giner J. 1999. Non-enzymatic browning in peach puree during heating. Food Research International 32: 335-43.

Goupy P, Dufour C, Loonis M, Dangles O. 2003. Quantitative kinetic analysis of hydrogen transfer reactions from dietary polyphenols to the DPPH radical. Journal of Agricultural and Food Chemistry 51: 615-22.

Granados JQ, Mir MV, Serrana HLG, Martinez MCL. 1996. The influence of added caramel on furanic aldehyde content of matured brandies. Food Chemistry 56(4): 415-9.

Hagerman AE, Butler LG. 1981. The specifictity of pro-anthocyanidin: protein interactions. Journal of Biological Chemistry 256: 4494-7.

Hatfield RD, Ralph J, Grabber JH. 1999. Cell wall cross-linking by ferulates and diferulates in grasses. Journal of the Science of Food and Agriculture 79: 403-7.

Homoki-Farkas P, Orsi F, Kroh LW. 1996. Methylglyoxal determination from different carbohydrates during heat processing. Food Chemistry 59(1): 157-63.
Ishii T. 1997. Structure and function of feruloylated polysaccharides. Plant Science 127: 111-27.

Kato Y, Matsuda T, Kato N, Nadamura R. 1988. Browning and protein polymerization induced by amino-carbonyl reaction of ovalbumin with glucose and lactose. Journal of Agricultural and Food Chemistry 36: 806-9.

Koleva I I, Niederlander HAG, Beek TA. 2000. An on-line HPLC method for detection of radical scavenging compounds in complex mixtures. Journal of Agricultural and Food Chemistry 72: 2323-8.

Kroh LW. 1994. Caramelisation in food and beverages. Food Chemistry 51: 373-379.

Kroll J, Rawel JM. 2001. Reactions of plant phenols with myoglobin: influence of chemical structure of the phenolic compounds. Journal of Food Science 66(1): 48-58.

Jin ZQ, Chen X. 1998. A sample reprodciple model of free radical-injured isolated heart induced by 1,1-Diphenyl-2-Picryl-Hydrazyl (DPPH). Journal of Pharmacological Methods 39: 67-70.

Jobstl E, O’Connell J, Fairclough JPA, Williamson MP. 2004. Molecular model for astringency produced by polyphenol-protein interactions. Biomacromolecules 5(3): 942-9.

Lam TBT, Kadoya K, Iiyama K. 2001. Bonding hydroxycinnamic aicds to lignin : ferulic and p-coumaric acids are predominantly linked at the benzyl position of lignin, not the β-position, in grass cell walls. Phytochemistry 57: 987-92.
Lee GC, Lee CY. 1997. Inhibitory effect of caramelization products on enzymic browning. Food Chemistry 60: 231-5.

Lerici CR, Manzocco L, Anese M. 1999. Ethanol in food : liquid-vapour partition in model systems containing maillard reaction products. Food Research International 32: 429-32.

Liu S-C, Chang H-M, Wu JSB. 2003. A study on the mechanism of browning in mei liqueur using model solutions. Food Research International 36: 579-85.

Macheix JJ, Fleuriet A, Billot J. 1990. Fruit phenolics. Boca Raton, Florida: CRC Press.

Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. 2001. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science and Technology 11: 340-6.

Martinez MV, Whitaker JR. 1995. The biochemistry and control of enzymatic browning. Trends in Food Science & Technology 6: 195-200.

Minamida K, Kaneko M, Ohashi M, Sujaya N, Sone T, Wada M, Yokota A, Hara H, Asano K, Tomita F. 2005. Effects of difructose anhydride Ⅲ (DFAⅢ) administration on bile acids and growth of DFA Ⅲ-assimilating bacterium Rumminococcus productus on rat intestine. Jouranal of Bioscience and Bioengineering 99(6): 548-54.

Naczk M, Amarowicz R, Sullivan A, Shahidi F. 1998. Current research developments on polyphenolics of rapeseed/canola: a review. Food Chemistry 62: 489-502.

Nice DJ, Robinson DS, Holden MA. 1995. Characterisation of a heat-stable antioxidant co-purified with the superoxide dismutase activity from dried peas. Food Chemistry 52: 393-7.

Nielsen ILF, Haren GR, Magnussen EL, Dragsted LO, Rasmussen SE. 2003. Quantification of anthocyanins in commercial blackcurrant juices by simple high-performance liquid chromatography. Investigation of their pH stability and antioxidative potency. Journal Agricultural Food Chemistry 51: 5861-6.

Niemeyer HB, Metzler M. 2003. Differences in the antioxidant activity of plant and mammalian lignans. Journal of Food Engineering 56: 255-6.

O’Connell JE, Fox PF. 1999. Proposed mechanism for the effect of polyphenols on the heat stability of milk. International Dairy Journal 9: 523-36.

Parr AJ. Ng A, Waldron KW. 1997. Ester-linked phenolic components of carrot cell walls. Journal Agricultural Food chemistry 45: 2468-71.

Popa MI, Nicolae A, Valentin I, Andrei D. 2000. Study of the interactions between polyphenolic compounds and chitosan. Reactive & Functional Polymers 45: 35-43.

Potier P, Valerie Maccario V, Giudicelli MB, Queneau Y, Dangles O. 1999.Gallic esters of sucrose as a new class of antioxidants. Tetrahedron Letters 40: 3387-90.

Priyadarsini Ki, Khopde SM, Kumar SS, Mohan J. 2002. Free radical studies of ellagic acid, a natural phenolic antioxidant. Journal of Agricultural and Food Chemistry 50: 2200-6.

Ratsimba V, Fernandez JMG, Defaye J, Nigay H, Voilley A. 1999. Qualitative and quantitative evaluation of mono- and disaccharides in D-fructose, D-glucose and sucrose caramels by gas-liquid chromatography-mass spectrometry Di-D-fructose dianhydrides as tracers of caramel authenticity. Journal of Chromatography A 88: 283-93.

Reyes FGR, Poocharoen B, Wrolstad RE. 1982. Maillard browning reaction of sugar-glycine model systems: changes in sugar concentration, color and appearance. Journal of Food Science 47: 1376-7.

Rivero-Perez MD, Perez-Magarino S, Gonzalez-San Jose ML. 2002. Role of melanoidins in sweet wines. Analytica China Acta 458: 169-75.

Rodriguez-Arcos RC, Smith AC, Waldron KW. 2002. Effect of storage on wall-bound phenolics in green asparagus. Journal Agricultural Food Chemistry 50: 3197-203.

Sabir MA, Sosulski FW, Finlayson AJ. 1974. Chlorogenic acid-protein interactions in sunflower. Journal of Agricultural and Food Chemistry 22(4): 575-78.

Sanchez-Moreno C, Larrauri JA, Saura-Calixto F. 1999. Free radical scavenging capacity of selected red, rose and white wines. Journal of Food Science 79: 1301-4.

Sawamura M, Nakagawa T, Katsuno S, Hamaguchi H, Ukeda H. 2000. The effects of antioxidants on browning and on degradation products caused by dehydroascorbic acid. Journal of Food Science 65: 20-3.

Shahrzad S, Bitsch I. 1996. Determination of some pharmacologically active phenolic acid in juices by high performance liquid chromatography. Journal of Chromatography 741: 223-32.

Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 40: 945-8.

Siebert KJ. 1999. Effects of protein-polyphenol interactions on beverage haze, stabilization and analysis. Journal of Agricultural and Food Chemistry 47: 353-62.

Silanikove N, Perevolotsky A, Provenza FD. 2001. Use of tannin binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Animal Feed Science and Technology 94: 69-81.

Simkovic I, Surina I, Vrican M. 2003. Primary reactions of sucrose thermal degradation. Journal of Analytical and Applied Pyrolysis 70: 493-504.

Smith BG, Harris PJ. 2001. Ferulic acid is esterified to glucuromoarabinoxylans in pineapple cell walls. Phytochemistry 56: 513-9.

Spagna G, Pifferi PG, Rangoni C, Mattivi F, Nicolini G, Palmonari R. 1996. The stabilization of white wines by adsorption of phenolic compounds on chitin and chitosan. Food Research International 29: 241-8.

Sroka Z, Cisowski W. 2003. Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food and Chemical Toxicology 41: 753-8.

Torres P, Oliveira FAR. 1999. Application of the acid hydrolysis of sucrose as a temperature indicator in continuous thermal processes. Journal of Food Engineering 40: 181-88.

Tsai CH, Kong MS, Pan BS. 1991. Water activity and temperature effects on nonenzymic browning of amino acid in dried squid and simulated model system. Journal of Food Science 56(3): 665-70.

Tsai PJ, Delva L, Yu TY, Huang YT, Dufosse L. 2005. Effect of sucrose on the anthocyanin and antioxidant capacity of mulberry extract during high temperature heating. Food Research International 38: 1059-65.

Tsai PJ, Huang HP. 2004. Effect of polymerization on the antioxidant capacity of anthocyanins in Roselle. Food Research International 37: 313-8.

Tsai PJ, Huang HP, Huang TC. 2003. Relationship between anthocyanin patterns and antioxidant capacity in mulberry wine during storage. Journal of Food Quality 27: 497-505.

Umerie SC. 2000. Caramel production from saps of African oil palm (Elaeis guineensis) and wine palm (Raphia hookeri) trees. Bioresource Technology 75: 167-9.

Waldron KW, Selvendran RR. 1990. Effect of maturation and storage on asparagus (Asparagus officinalis) cell wall composition. Physiology Plant 80: 576-83.

Waldron KW, Smith A, Parr A, Ng A, Parker ML. 1997. New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture. Trends in Food Science & Technology 8: 213-21.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top