跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 05:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊荃與
研究生(外文):Chang-Yu Chuang
論文名稱:利用固態醱酵法生產超氧歧化酶之研究
論文名稱(外文):Study of production superoxide dismutase by solid state fermentation
指導教授:謝寶全謝寶全引用關係林頎生
指導教授(外文):Pao-Chuan HsiehChyi-Shen Lin
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:143
中文關鍵詞:納豆超氧歧化酶固態醱酵法抗氧化致突變性
外文關鍵詞:nattosuperoxide dismutasesolid state fermentationantioxidantantimutagenicity
相關次數:
  • 被引用被引用:8
  • 點閱點閱:1693
  • 評分評分:
  • 下載下載:282
  • 收藏至我的研究室書目清單書目收藏:1
本研究由市售納豆產品中篩選出一高活性超氧歧化酶生產菌株 Bacillus subtilis B 27-2,並分別探討液態及固態醱酵最佳培養條件之研究,以提高菌株生產超氧歧化酶活性產量。菌株在液態醱酵過程中,藉由探討不同生長條件對於菌株生產超氧歧化酶活性之影響,期望本菌株利用液態醱酵生產超氧歧化酶之最佳培養條件。結果顯示,經探討後,最適培養條件以振盪速度350 rpm,接種量5 % ,培養基組成分為8 % maltose,12.5 % soybean powder及0.1 % NaCl,起始培養基pH值為7.0 ± 0.2,37℃振盪培養42小時後,培養液中超氧歧化酶活性可達2619.10 U/mL。
利用固態醱酵法探討菌株 Bacillus subtilis B 27-2生產超氧歧化酶之最佳培養條件。結果顯示,以90 % 麩皮及10 % 黃豆為固態醱酵基質,在10 % 接種量,起始水分為65 %,在30℃培養溫度下,另添加5 % maltose,經培養72小時後,菌株所生產之超氧歧化酶類型為錳型超氧歧化酶(Mn-SOD),其活性大幅增加至21066 U/g,為利用液態醱酵法所生產超氧歧化酶活性之8.04倍。
將醱酵產物分別利用熱風及冷風進行乾燥程序,經冷風乾燥處理48小時,樣品水分含量降至12.38 %,且樣品超氧歧化酶活性可較乾燥前提升26 %,顯示以冷風乾燥處理為較佳樣品乾燥方式。醱酵物抗氧化能力方面,經乾燥後具有良好之抗氧化能力,其能力可隨樣品濃度增加而提升,在醱酵物濃度為10 mg/mL時,其清除DPPH能力、螯合亞鐵離子能力及還原力分別69.37 %、92.73 %與2.091。
醱酵物進行安姆試驗(Ames test)中發現,對於S. typhimurium TA 97及TA 100菌株均不具毒性及致突變性。在抗致突變性方面,結果顯示醱酵物具有良好之抗致突變性。醱酵物於0.5 mg/plate濃度時即可抑制由NQNO 所引起之致突變性,其抑制能力為26.01 %,並隨醱酵物濃度之提高而上升。在抑制B[a]P 所引起的致突變性方面,顯示醱酵物對於S. typhimurium TA100有較佳抗致突變性。在濃度0.1 mg/plate 時,其抑制能力為34.88 %,隨添加濃度的提高,在濃度5.0 mg/plate時其抑制效果可達80.16 %。
醱酵物以不同濃度與人類肝癌細胞Hep G2與初生鼠正常肝細胞BNL CL.2進行細胞存活試驗中發現,醱酵物質並不影響 BNL CL.2細胞生長,且其細胞存活率可隨醱酵物濃度增加而上升,在250 μg/mL濃度下,經培養72小時後,BNL CL.2 細胞存活率為183.75 %。在Hep G2 細胞中,經培養48小時後,50與250 μg/mL濃度並不影響Hep G2存活率,但在高濃度500 μg/mL則使細胞存活率下降至65.51 %。
醱酵物經乾燥後,分別以不同溫度條件(-20、4、20、30℃)進行儲存試驗,於儲存期間其超氧歧化酶活性與對照組相比較並無明顯變化,於儲存第120天後,其活性與對照組比較仍可保持90 % 以上。
A high SOD activity strain, Bacillus subtilis B 27-2, was screened from natto and used to compare the production of SOD by different fermentation methods in this study to increase superoxide dismutase production. The results showed that the fortified nutrient culture contained 8% maltose, 12.5% soybean powder, 0.1 % NaCl, 3% inoculums size and initial medium pH at 7.0 ± 0.2, shaked with 350 rpm at 37℃ for 42 hours, 2619.10 U/mL of SOD activity was obtained by liquid state fermentation. The compared cultural conditions used in solid state fermentation with 90% wheat bran and 10% soybean as fermentation substrate, inoculation of 10% of B. subtilis B 27-2, initial moisture of 65%, incubation at 30°C for 72 hours, with addition of 5% maltose, 21066.34 U/g of SOD activity could be obtained. The superoxide dismutase activity produced by solid state fermentation was 8.04 folds higher than using liquid state fermentation method, and produced was manganese type SOD.
Comparing hot and cold air drying methods to dry fermentation production, cold dry method decreese moisture to 12.38%, and increase SOD activity for 26%. Antioxidative activities of fermentation substrate showed that 10 mg/mL concentration had the best performance on α,α-diphenyl-b-picrylhydrazyl (DPPH) radical scavenging ability, ion scavenging ability, and reducing ability with 69.37%, 92.73%, and 2.091, respectively.
The mutagenic and antimitagenic effects of fermentation substrate tested by Ames test evaluate, showed no toxic and mutagenicity effect for both tester strains of Salmonella typhimurium TA97 and TA100. The antimutagenicities of fermentation substrate had 26.01% inhibition effect in 0.5 mg/plate concentration, and inhibition effect increased along with increasing concentration. Fermentation substrate had significant antimutagenicity for the mutation induced by TA100 with B[a]P, the antimutagenicities of fermentation substrate had 34.88% inhibition effect in 0.1 mg/plate of concentration, and 80.16% inhibition effect in 5.0 mg/plate of concentration.
Effect of substrate to ward BNL CL.2 cell growth, cell numbers will increase along with raising concentration. In contrast, Hep G2 cell numbers decreased to 65.51 % in 500 μg/mL concentration. Storage of dried fermentation substrate under different temperature (-20, 4, 20, 30℃) showed no signification influence on superoxide dismutase activity as compared with control group. A 90% and more of the SOD activity remained after 120 days of storage.
摘 要 I
Abstract III
誌 謝 V
目 錄 VI
圖表目錄 XII
壹、前 言 1
貳、文獻回顧 3
一、自由基與活性氧分子簡介 3
(一)自由基與活性氧分子 3
(二)活性氧物質種類 4
(三)活性氧及自由基生成來源 6
(四)自由基造成的氧化傷害與疾病關係 6
1、對DNA傷害 6
2、蛋白質氧化 8
3、脂質過氧化反應 8
(五)生物體抗氧化系統 8
1、非酵素型抗氧化系統 9
2、酵素性抗氧化系統 11
二、超氧岐化酶之介紹 13
(一)超氧岐化酶類型與結構 13
1、銅鋅型超氧岐化酶 13
2、錳型超氧岐化酶 14
3、鐵型超氧岐化酶 14
(二)影響酵素活性之物質種類 15
1、變性劑 15
2、還原劑 15
(三)超氧岐化酶反應機制 19
(四)醱酵產品之抗氧化性 21
三、固態醱酵 22
(一)固態醱酵的應用 22
1、固態醱酵應用於工業方面 24
2、固態醱酵應用於農業方面 24
3、固態醱酵應用於食品方面 24
(二)影響固態醱酵製程之因子 25
1、菌株 25
2、培養基質 26
3、培養方法 26
(三)固態醱酵與液態醱酵之比較 29
1、固態醱酵法優點 29
2、固態醱酵法缺點 30
四、樣品抗致突變性及對細胞生長之影響 33
(一)食物中致突變物及致癌物 33
1. 黴菌毒素 33
2. 異環胺類化合物 34
3. 多環芳香烴化合物 34
4. 亞硝基化合物 35
(二) 食品中之抗致突變物及抗致癌物 35
(三) 抗致突變物及抗致癌物之作用機制 37
(四)安姆氏試驗法 37
1. 原理 37
2. 測試菌株 38
(五)細胞生長與細胞死亡 39
1. 細胞凋亡(apoptosis) 39
2. 細胞壞死(necrosis) 40
參、材料與方法 43
一、實驗材料 43
(一)分離源 43
(二)培養基 43
(三)藥品 44
(四)實驗材料 44
(五)實驗使用細胞株 45
(六)實驗使用菌株 45
(七)儀器設備 45
二、實驗設計與流程 46
三、實驗方法 47
(一)菌種之篩選 47
1. 菌種之分離 47
2. SOD活性測定方法 47
3. 高活性SOD生產菌株篩選 48
(二)液態醱酵法生產SOD最適培養條件測定 48
1. 生長曲線 48
2. 最適振盪速度培養條件之測定 48
3. 種菌接種量培養條件之測定 49
4. 添加不同碳源利用性 49
5. 碳源濃度之探討 50
6. 不同氮源利用性之探討 50
7. 氮源濃度之探討 50
8. 無機鹽類之影響 51
9. 起始pH值之影響 51
10. 培養溫度之影響 51
11. 最適培養條件生長曲線、SOD活性及其pH 值之變化 52
(三) 固態醱酵法生產SOD最適培養條件之探討 52
1. 不同醱酵基質培養條件之探討 52
2. 不同比例醱酵基質之探討 52
3. 起始水分培養條件之探討 53
4. 培養溫度之測定之探討 53
5. 不同接種量對菌株生產SOD之影響 53
6. 不同碳源利用性之探討 53
7. 不同氮源利用性之探討 54
8. 不同鹽類利用性之探討 54
9. 最適生長曲線及SOD活性變化之情形 54
10. 不同培養條件對SOD活性之影響 55
11. 不同乾燥方式之水分變化及對SOD活性影響 55
(四)醱酵產物特性之測定 55
1. SOD類型分析 55
2. 抗氧化能力測定 56
3. 醱酵產物抗致突變性試驗 57
4. 醱酵產物對細胞生長之影響 59
5. 儲存期間SOD活性變化 62
(五)統計分析 62
肆、結果與討論 64
一、菌種分離與篩選 64
二、菌株鑑定 64
三、液態醱酵法生產SOD最適培養條件測定 67
(一)生長曲線 67
(二)不同振盪速度對SOD生產之影響 67
(三)不同接種量培養對SOD活性之影響 70
(四)不同碳源對SOD活性之影響 70
(五)不同碳源濃度對SOD活性之影響 73
(六)不同氮源對SOD活性之影響 75
(七)不同氮源濃度對SOD活性之影響 75
(八)不同無機鹽類對SOD活性之影響 77
(九)不同起始pH值對SOD活性之影響 80
(十)不同培養溫度對SOD活性之影響 80
(十一)Bacillus subtilis 27-2最適生長曲線、SOD活性 及其pH值變化 83
四、固態醱酵法生產SOD最適培養條件之探討 85
(一)不同醱酵基質培養條件之探討 85
(二)不同比例醱酵基質對菌體產生SOD活性影響 86
(三)醱酵基質中起始水分含量對菌株生產SOD活 性影響 89
(四)不同培養溫度對菌株生產SOD活性影響 90
(五)不同接種量對菌株產生SOD活性影響 90
(六)不同碳源對菌株產生SOD活性影響 93
(七)不同氮源對菌株產生SOD活性影響 96
(八)不同鹽類菌株產生SOD活性影響 96
(九)Bacillus subtilis 27-2最適固態醱酵生長曲線 及SOD活性變化 99
(十)不同培養條件對SOD活性之影響 99
(十一)不同乾燥方法對醱酵物水分變化及SOD活 性影響 100
五、醱酵產物特性探討 104
(一)SOD類型測定 104
(二)抗氧化能力測定 104
1. 捕捉1,1-二苯基-2-苦味肼能力之測定 104
2. 醱酵產物螯合亞鐵離子之能力 105
3. 醱酵產物之還原能力 109
(三)醱酵產物抗致突變性試驗 110
1. 毒性試驗 110
2. 醱酵產物致突變試驗 113
3. 醱酵產物抗致突變試驗 113
(四)醱酵物對細胞生長影響 117
1. 醱酵物對人類肝癌細胞Hep G2生長影響 117
2. 醱酵物對初生鼠正常肝細胞BNL CL.2生長 影響 118
(五)儲存期間SOD活性變化 123
伍、結論 125
陸、參考文獻 127
柒、作者簡介 143
www.altonweb.com
www.metallo.scripps.edu
丁克祥 。1996。 SOD生物醫學淺論。藝軒出版社。
王淑貞 。1999。 黃麴菌及枯草菌超氧歧化酶之研究。靜宜大學食品營養系碩士論文。
王淑君 。1999。 台灣金線連抗氧化酵素之研究。國立臺灣大學藥學研究所碩士論文。
王淑菀 。2000。 Ames Test 之原理及其於產品安全性評估之應用。食品工業32 (11): 8-17。
王鳳英 。1994。 利用固態發酵以玉米穗軸為基質生產纖維素分解酵素。國立台灣大學農業化學研究所博士論文。
朱淯維 。2003。 荷葉乙醇萃取物抗氧化性之探討。國立台灣大學食品科技研究所碩士論文。
朱榮昌 。2002。 鯖魚內臟水解物作為Bacillus subtilis 培養基氮源生
產鹼性蛋白。台灣海洋大學食品科學系碩士學位論文。
呂鋒洲 。1993。 抗氧化酵素之介紹。自由基生物學與醫學 1: 1-7。
呂鋒洲、徐展東 。1996。 發酵大麥清除超氧陰離子自由基能力之研究。食品科學 23: 10-9。
沈育維 。2004。 固態醱酵製程的開發與應用。食品工業36(10): 17-24。
林以立 。2002。 紅麴抗癌活性之研究。國立台灣大學農業化學研究所博士論文。
吳方真、林慶福 。1998。 利用Aspergillus oryzae A-29 以固體發酵法生成超氧歧化酶。中國農業化學會誌 36: 173-80。
吳俊億 。2004。 利用根黴菌開發機能性醱酵黑豆食品之研究。國立台灣大學微生物與生化學研究所碩士論文。
翁瑞光 。1998。 葡萄嬰萃取物於模式系統之抗氧化性,食品科學
25(3): 268-80。
姜淑繡 。2001。 省產蘿蔔之抗氧化性研究。大葉大學食品科學系碩士 論文。
孫菡儀 。2001。 馬栗樹皮素抑制人類肝癌細胞株HepG2 cells生長分子機制之探討。中山醫學院生物化學研究所碩士論文。
徐惠玲 。2005。 納豆菌Bacillus subtilis var. natto NPUST B 11-2生產納豆激酶之最適培養條件及其生化特性探討。國立屏東科技大學食品科學系碩士論文。
陳彥添 。2003。 紅麴中桔黴素之生成及安全性。食品工業 35(3): 30-7。
陳惠添 。2004。 龍根菌於不同培養基中之生長和對酸與膽鹽之耐受及其抗氧化活性。國立中興大學食品科學系碩士論文。
黃中洋 。1991。 Superoxide dismutase醫療功效。台灣醫界34: 139-43。
黃卓治、辛志勳、張文重 。1977。 納豆菌之研究I 納豆菌培養條件之檢討。屏東農專學報 18: 69-75。
黃薺緯 。2003。 金頂側耳之呈味特性和抗氧化及抗致突變性質。國立中興大學食品科學系碩士論文。
曾慶平 。1999。 枯草桿菌屬細菌群體計劃 ─ 枯草桿菌屬細菌醱酵系統之研究。行政院國家科學委員會專題研究計畫成果報告。
楊盛行 。2002。 固態醱酵在農業上之應用。科學農業50: 156-67。
楊盛行、陳盟靜 。2000。 高溫放線菌對堆肥化過程的影響。中華生質能源學會會誌 19(3-4): 115-27。
詹順峰、黃景軍、陳國樹、楊盛行 。1998。 高溫放線菌之纖維素酶活性及對稻草堆肥品質之影響。中華農學會報185: 58-71。
趙文婉,張珍田,周淑姿 。2002。 淺談植物類化學物質對抗自由基之機制。食品工業 34(2): 49- 59。
蔡淑瑤 。2002。 靈芝與柳松菇之抗氧化性質和其對腫瘤細胞之毒性及柳松菇之抗致突變性質。國立中興大學食品科學系碩士論文。
羅國仁、余文立 。2004。 固態醱酵製程的開發與應用。食品工業36(10): 2-9。
鄧德豐 。1996。 應用微生物學。睿煜出版社。

蘇娟娟 。2003。 米酒糟蛋白質對人類真皮層纖維母細胞生長的影響。國立東華大學生物技術研究所碩士論文。

Allagheny N, Obanu ZA, Platt GC, Owens JD. 1996. Countrol of ammonia formation during Bacillus subtilis fermentation of legumes. International Journal of Food Microbiology 29: 321-33.

Alley MC, Scudiero DA, Monks A, Hursey ML, Czerwinski MJ, Fine
DL, Abbott BJ, Mayo JG, Shoemaker RH, Boyd MR. 1988. Feasibility of drugscreening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Research 48 (3): 589-601.

Ames BN, McCann J, Yamasaki E. 1975. Methods for detecting carcino gens and mutagens with the Salmonefia/mamma lian-microsome mutagenicity test. Mutation Research 31: 347-64.
Ames BN. 1983. Dietary carcinogenesis and anticarcinogens. Science.221: 1256-64 .
Ames BN, Shigenaga MK, Hagen TM. 1993. Oxidants, antioxidants and degenerative disease of aging. Proceedings of the National Academy of Sciences of USA 90: 1915-22.
Angelova MB, Pashova SB, Slokoska LS. 2000. Comparison of antioxidant enzyme biosynthesis by free and immobilized Aspergillus niger cells. Enzyme Microbilogy Technology26: 544-9.
Anyia Y, Ohtani II, Higa T, Miyaci C, Gibo, Shmabukuro M. 2000. Dimrumic acid as an antioxiant of Mold, Monascus anka. Free Radicial Biology Medicine 28: 999-1004.
Aoki H, Uda I, Tagami K, Furura Y, Endo Y , Fujimoto K. 2003. The production of a new tempeh-like fermented soybean containing a high level of gamma-aminobutyric acid by anaerobic incubation with Rhizopus. Bioscience Biotechnology Biochemistry 67: 1018-23.
Atoui AK, Mansouri A, Boskou G, Kefalas P. 2005. Tea and herbal infusions: their antioxidant activity and phenolic prowle. Food Chemistry 89(1): 27-36.
Babu KR, Satyanarayana T. 1995. α-amylase production by the thermophilic Bacillus coagulans in solid state fermentation. Process Biochemistry 30: 305-9.
Bakan N, Taysi S, Yılmaz O, Bakan E, Kuskay S, Uzun N, Gundogdu M. 2003. Glutathione peroxidase, glutathione reductase, superoxide dismutase activies, glutathione, nitric oxide,and malondialdehyde levels in serum of patients withchronic lymphocytic leukaemia, Clinical Chemistry 338: 143–9.
Bannister JV, Bannister WH, Rotilio G. 1987. Aspect of the structure, function and applications of superoxide dismutase. Critical Reviews in Biochemistry 22: 111-8.
Bast A, Haenen GRMM, Doelman CJA. 1991. Oxidants and antioxidants:state of the art. American Journal Medicine 91(3C): 2S-13S.
Bellon-Maurel V, Orliac O, Christen P. 2003. Sensors and measurements in solid state fermentation: a review. Process Biochemistry 38: 881-96.
Botella C, Ory I, Webb C, Blandino A. 2005. Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochemical Engineering Journal 26: 100-6.
Chen Q, Shi H, Ho CT. 1992. Effects of rosemary extracts and major constituents on lipid oxidation and soybean lipoxygenase activity. Journal American Oil chemistry 69(10): 999-1002.
Culp SJ, Gaylor DW, Sheldon WG, Goldstein LS, Beland FA. 1998. A comparison of the tumors induced by coal tar and benzo[a]pyrene in a 2-year bioassay. Carcinogenesis 19: 117-24.
Dinis TCP, Madeira VMC, Almeida LM. 1994. Action of phenolic derivatives (acetaminophen, salicylate, and 5-amino salicylate) as inhibitions of membrane lipid peroxidation and as peroxyl radical scavengers. Archives of Biochemistry and Biophysics 315: 161-9.
Dominguez M, Mejia A, Barrioa-Gonzalez J. 2000. Respiration studies of penicillin solid-state fermentation. Journal of Bioscience Bioengineering 89(5): 409-13.
Donnelly JK, Mclellan KM, Walker JL, Robinson DS. 1989. Superoxide dismutase in foods. Food Chemistry 33: 243-70.
Durand A. 2003. Bioreactor designs for solid state fermentation. Biochemical Engineering Journal 13: 113-25.
Esaki H, Onozaki H, Kawakishi S, Osawa T. 1996. New antioxidant isolated from Tempeh. Journal of Agricultural and Food Chemistry 44: 696-700.
Esaki H, Onozaki H, Kawakishi S, Osawa T. 1999. Newpotent antioxidative o-dihydroxyisoflavones in fermented Japanese soybean products. Bioscience Biotechnology Biochemistry 63: 1637-9.
Esterbauer H, Gebicki J, Puhl H. 1992. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radicial Biol ogy and Medicine 13: 341-90.
Fawthrop DJ, Boobis AR, Davies DS. 1992. Mechanisms of cell death. Archives of Toxicology 65: 437-44.
Ferreira G, Boer CG, Rosane M, Peralta. 1999. Production of xylanolytic enzymes by Aspergillus tamari in solid state fermentation. Process Biochemistry 174: 335-9.
Forman HJ, Fridovich I. 1973. On the stability of bovine superoxide dismutase. The effect of metals. Journal of Biological Chemistry 248: 2645-9.
Francisco BM, Alicia S, Manuel DL, Francisco R. 1996. Lipidperoxidation products in human subretinal fluid. Free Radicial Biology Medicine 20: 899-903.
Frei B, England L, Ames B. 1989. Ascorbate is an outstanding antioxidant inhuman blood plasma. Proceedings of the National Academy of Sciences of the USA 86: 6377-81.
Fridovich I. 1989. Superoxide dismutase. An adaptation to a paramagnetic gas. Journal of Biological Chemistry 262: 7761-4.
Gessesse A, Mamo G. 1999. Hight level xylanase production by an alkalophilic Bacillus sp. by using solid state fermentation. Enzyme Microbial Technology 25: 68-72.
Gligic L, Radulovic Z, Zavisic G. 2000. Superoxide dismutase biosynthesis by two thermophilic bacteria. Enzyme Microbilogy Technoogy 27: 789-92.
Gutteridge JM, Halliwell B. 2000. Free radicals and antioxidants in the year 2000. A historical look to the future. Annals of New York Academy of Sciences 899: 136-47.
Halliwell B, Murcia MA, Chirico S, Aruoma OI. 1995. Free radicals antioxidants in food and in vivo: What they do and how to work. Critical Reviews in Food Science Nutrition 35: 7-20.
Haslett C. 1992. Resolution of acute inflammation and the role of apoptosis in tissue fate of granulocytes. Clinical Science 83: 639-49.
Hatheill JR, Till GO, Ward PA. 1991. Mechanisms of oxidant-induced changes in erythrocytes. Agents and Actions 32: 351-8.
Hattori T, Ohishi H, Yokota T, Ohoami H. 1995. Antioxidative effect of crude antioxidant preparation from soybean fermented by Bacillus natto. Food Chemistry 28: 135-8.
Inaoka T, Matsumura Y, Tsuchido T. 1998. Molecular cloning and nucleotide sequence of the superoxide dismtase gene and characterization of its product from Bacillus subtilis. Journal of Bacteria 180(14): 3697-703.
Ishigawa Y. 1992. Development of new types of antioxidants from microbial origin. Journal of Japan Oil Chemistry social 41: 762.
Jacob RA. 1995. The integrated antioxidant system. Nutrition Research 15: 755-66.
Jagerstad M, Olsson K, Grivas S, Negishi C, Wakabaya K, Tusta M, Sato S, Sugizmar T. 1984. Formation of 2-amino-3,8-dimethylinidazo [4,5-f] quinoxaline in a model system by heating creatinine, glycine and glucose. Mutation Research 126: 239-44.
James LG, Sareen SG. 2000. Advanced nutrition and human metabolism 3rd ed. Wadsworth USA.
Jecu L. 2000. Solid state fermentation of agricultural wastes for endoglucanase production. Industrial Crops and Products 11: 1-5.
Kashyap DR, Soni SK, Tewari R. 2003. Enhanced production of pectinase by Bacillus sp. DT7 using solid state fermentation. Bioresource Technology 88: 251-4.
Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N. 2001.Analysis of 200 food items for benzo[a]pyrene and estimation of its intake in an epidemiologic study. Food and Chemical Toxicology 39: 423-36.
Kerr JFR. 1994. Apotosis – Its significance in cancer and cancer therapy. Cancer 73: 2013-26.
Kukreja RC, Hess HL. 1992. The oxygen free radicl system: from equations through membrane protein interactions to cardiovascular injury andprotection. Cardiovascular Research 26: 641-55.
Kunamneni A, Permaul K, Singh S. 2005. Amylase production in solid state fermentation by the thermophilic fungus Thermomyces lanuginosus. Journal of Bioscience Bioengineering 2: 168-71.
Larena I, De-Cal A, Melgarejo P. Solid substrate production of Epicoccum nigrum conidia for biological control of brown rot on stone fruits. International Journal of Food Microbiology 94: 161-7.
Leangon S, Maddox IS, Brooks JD. 1999. Influence of the glvcolvtic rate on production of citric acid and oxalic acid by Aspergillus niger in solid state fermentation. World Journal of Microbiology and Biotechnology 15: 493-5.
Lin CT, Lin MT, Chen YT, Shaw TE. 1995. Subunit interaction enhances enzyme activity and stability of sweet potato cytosolic Cu/Zn-superoxide dismutase purified by a His-tagged recombinant protein method. Plant Molecular Biology 28: 303-11.
Mantovani G, Maccio A, Madeddu C, Mura L, Gramignano G, Lusso MR. 2002. Quantitative evaluation of oxidative stress, chronic inflammatory indices and leptin in cancer patients: correlation with stage and performance status. International Journal of Cancer 98: 84-91.
Mantovani G, Maccio` A, Lai P, Massa E, Ghiani M, Santona MC. 1998. Cytokine activity in cancer-related anorexia/-cachexia: role of megestrol acetate and medroxyprogesteroneacetate, Seminal of Oncology 25: 45-52.
Matter LB, Luchese RH. 1998. Cultural conditions for pigment production by Monascus purpureus in rice. Revista de Microbiologic 29: 69-75.
Mark R, Slaughter, Hansa Thakkar, Peter J. 2002. Effect of Diquat on the Antioxidant System and Cell Growth in Human Neuroblastoma Cells. Toxicology and Applied Pharmacology 178: 63–70.

Maron DM, Ames BN. 1983. Revised methods for the Salmonella mutagenicity test. Mutation Research 113: 173-215.
Marnett LJ. 2002. Oxygen radicals, lipid peroxidation and DNA damage. Toxicology 182: 219-22.
Mccord J. 2000. The evolution of free radicals and oxidative stress. American Journal of Medicine 108: 652-9.
Mccord JM, Fridovich I. 1969. Superoxide dismutase, an enzymic function for erythrocuprein (Hemoc). Journal of Biology Chemistry 244: 6049-55.
Mccord JM, Fridovich I. 1986. The utility of superoxide dismutase in studing free radical reactions. I. Radicals generated by the interaction of sulfite, dimethylsulfoxide and oxygen. Journal of Biology Chemistry 244: 6056-63.
Meyer AS, Isaksen A. 1995. Application of enzymes as food antioxidants. Trends in Food Science and Technology 6: 300-4.
Michael CA, Scudiero DA, Monks A, Hyrsey ML, Czerwinski MJ, Fine DL, Abbort BJ, Mayo JG, Shoemaker RH, Boyd MR. 1988. Feasibility of Drug Screening with Panels of Human Tumor Cell Lines Using a Microculture Tetrazolium Assay. Cancer Research 48: 589-601,
Mitchell DA and Lonsane BK. 1992. Definition, characteristics and potential, In: Doelle HW, Mitchell DA, Rolz CE. editors. Solid substrate cultivation, Elsevsir Science Publisher, London.
Mitchell DA, Berovic M, Krieger N. 2000. Biochemical engineering aspects of solid state bioprocessing. Advances in Biochemical Engineering 68: 61-138.
Nagao N, Matsuyama T, Yamamoto H, Toda T. 2003. A novel hybrid system of solid state and submerged fermentation with recycle for organic solid waste treatment. Process Biochemistry 39:37-43.
Neill S, Desikan R, Hancock J. 2002. Hydrogen peroxide signalling. Current Opinion in Plant Biology 5: 388-95.

Neto ADA, Prisco JT, Filho JT, Abreu CEB, Gomes-Filho E. 2006.Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environmental and Experimental Botany 56: 87-94
Parker MW, Blake CC, Barra D, Bossa F, Schinina ME, Bannister WH, Bannister JV. 1987. Structural identity between the iron and manganese containing superoxide dismutase. Process Engineering 1(5): 393-7.
Pfander H. 1992. Carotenoids: an overview. Methods in Enzymology 213: 3-13.
Phillips DH. 1999. Polycyclic aromatic hydrocarbons in the diet. Mutation Research 443: 139-47.
Prasad K, Kalar J, Bharadwaj L. 1993. Cardiac depressant effects of oxygen free radicals. Journal of Vascular Research 44: 257-69.
Raghavarao KSMS, Ranganathan TV, Karanth NG. 2003. Some engineering aspects of solid state fermentation. Biochemical Engineering Journal 13: 127-35.
Raimbault M. 1998. General and microbiological aspects of solid state fermentation. Electronic Journal of Biotechnology 1(3): 234-7.
Richter C. 1995. Oxidative damage to mitochondrial DNA and its relationship to aging. International Jourbal of Biochemistry and Cell Biology 27: 647-53.
Richter K, Trager A. 1994. L(+) lactic acid from sweet sorghum by submerged and solid state fermentations. Acta Biotechnologica 14: 367-78.
Robinson T, Singh D, Nigam P. 2001. Solid-state-fermentation: a promising microbial technology for secondary metabolite production. Applied Microbiology and Biotechnology 55(3): 284-9.
Rohrdanz E, Kahl R. 1998. Alterations of antioxidant enzyme expression in response to hydrogen peroxide. Free Radical Biology Medicine 24: 27-38.

Sato T, Yamada Y, Mitsui N, Murasawa H, Arak S. 2001a. Efficient production of menaquinone (Vitamin K2) by a menadione-resisitant mutant of Bacillus subtilis. Journal of Industrial Microbiology Biotechnology 26: 115-20.

Sato T, Yamada Y, Ohtani Y, Mitsui N, Murasawa H. 2001b. Production of menaquinone (Vitamin K2)-7 by Bacillus subtilis. Journal of Bioscience and Bioengineering 91(1): 16-20.
Schiller HJ, Andreoni KA, Bulkley GB. 1991. Free radical ablation forthe revention of post-ischemic renal failure following renal transplantation. Klin Wochenschr 69: 1083-94.
Shimada K, Fujikawa K, Yahara K, Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry 40: 945-8.
Shojaosadati SA, Babaeipour V. 2002. Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochemistry 37(8): 909-14.
Sieja K, Talerczyk M. 2004. Selenium as an element in the treatment of ovarian cancer in women receiving chemotherapy. Gynecologic Oncology 93: 320-7.
Soares M, Christen P, Pandey A, Soccol CR. 2000. Fruity flavour production by Ceratocystis fimbriata growth on coffee hush in solid-state fermentation. Process Biochemistry 35(8): 857-61.
Soccol CR, Marin B, Raimbault M, Lebeault JM. 1994. Breeding and growth of Rhizopus in raw cassava by solid state fermentation. Applied Microbiology and Biotechnology 41: 330-6.
Stavric B. 1994. Antimutagens and anticarcinogens in foods. Food and Chemical Toxicology 32: 79-90.
Steller H. 1995. Mechanisms and genes of cellular suicide. Science 267: 1445-8.
Stocker R. 1990. Induction of haem oxygenase as a defense against oxidative stress. Free Radicical Research Commune 9: 101-12.
Sugimura T, Wakabayashi K. 1990. Mutagens and Carcinogens infood. In Mutagens and Carcinogens in the Diety, ed. pp. 1-18.Wieley-Liss Inc., New York.
Tengerdy RP. 1998. Solid substrate fermentation for enzyme production. In: Pandey A, editor. Advances in Biotechnology. New Delhi: Educational Publishers & Distributors 13-6.
Thamas J. 1995. The role of free radicals and antioxidants : How do we know that are working. Critical Review Food Science and Nutrition 35: 21-39
Tompson CB. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267: 1456-62.
Tsukuda K, Kido T, Shimasue Y. 1983. Isolation of manganese containing superoxide dismutase from Bacillus subtilis. Agriculture Biology Chemistry 47(12): 2865-70.
Velera HR, Gomes J, Lakshmi S, Gururaja R, Suryanarayan S, Kumar D. 2005. Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microbial Technology 37: 521-6.
Vermes I, Haanen C, Reutelingsperger C. 2000. Flow Cytometry od Apoptotic Cell Death. Journal of Immunological Methods 243: 167-90.
Virupakshi S, Babu KG, Gaikward SR, Naik GR. 2005. Production of a xylanolytic enzyme by a thermoalkaliphilic Bacillus sp. JB-99 in solid state fermentation. Process Biochemistry 40: 431-5.
Waleh NS, Rapport SJ, Mortelmans KE. 1982. Development of a toxicity test to be coupled to the Ames Salmonella assay and the method of construction of the required strains. Mutation Research 97: 247-56.
Wang L, Mo H, Shi H. 1999. Production of lovastatin with solid state fermentation of Monascus rubber. Zhongguo Kangshengsu Zazhi 24: 96-8.
Weyand EH, Chen YC, Wu Y, Koganti A, Dunsford HA, Rodriguez LV. 1995. Differences in the tumorigenic activity of a pure hydrocarbon and a complex mixture following ingestion: benzo[a]pyrene vs manufactured gas plant residue. Chemical Research in Toxicology 8: 949-54.
Williams WB, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technology 28(1): 25-30.
Winrow VR, Winyard PG, Morris CJ. 1993. Free radicals in inflammation:second messengers and mediators of tissue destruction. British Medical Buletinl 49: 506-22.
Yang SS. 1988. Protein enrichment of sweet potato residue with amylolytic yeasts by solid state fermentation. Biotechnology Bioengineering 32: 886-90.
Yang SS, Yuan SS. 1990. Oxytetracyline production with sweet potatoresidue by solid state fermentation. World Journal of Microbiology and Biotechnology 6: 236-44.
Yang JH, Mau Jl, Ko pt, Huang LC. 2000. Antioxidant properties of fermeted soybean broth. Food Chemistry 71: 249-54.
Yen GC, Chang YC, Su SW. 2003. Antioxidant activity and active compounds of rice koji fermented with Aspergillus candidus. Food Chemistry 83: 49-54.
Yen GC, Chang YC, Sheu F, Chang HC. 2001. Isolation and characterization of antioxidant compounds from Aspergillus candidus broth filtrate. Journal of Agricultural and Food Chemistry 49: 1426-31.
Yong KJ, Jeong UP, Hyun B, Sung HO, In SK, Dong WK, Woo HJ. 2001. Purification and biochemical of a fibrinolytic enzyme from Bacillus subtilis BK-17. World Journal of Microbiology and Biotechnology 17: 89-92.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top