跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/13 16:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉穎
研究生(外文):Chia yin Chan
論文名稱:納豆菌與保加利亞菌融合株之創製及其特性探討
論文名稱(外文):Study on new fusant creation from Lactobacillus bulgaricus and Bacillus subtilis var. natto and their physiological characterization
指導教授:鄧德豐鄧德豐引用關係謝寶全謝寶全引用關係
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:114
中文關鍵詞:保加利亞菌納豆菌原生質體融合
外文關鍵詞:Lactobacillus bulgaricusBacillus subtilis var. nattoprotoplast fusion
相關次數:
  • 被引用被引用:1
  • 點閱點閱:639
  • 評分評分:
  • 下載下載:132
  • 收藏至我的研究室書目清單書目收藏:3
論文摘要內容:
本實驗選擇具有利用澱粉及好氣生長的特性之Bacillus subtilis var. natto,及Lactobacillus bulgaricus之產酸特性,以原生質體融合法使二種菌進行融合,來改良乳酸菌之基因特性,使其能利用澱粉來提高乳酸菌之利用性,期望育出能利用澱粉且在好氣狀態下能生長、產酸力高的乳酸菌,並提高乳酸菌之耐氧性。以lysozyme(先添加ampicillin阻斷細胞壁合成)將Lactobacillus bulgaricus及Bacillus subtilis var. natto細胞壁分解使形成原生質體,再以PEG 4000促使二菌株之原生質體融合,再包埋培養於再生培養基中使細胞壁再生,選出能利用澱粉並在好氣條件下能生長之融合株,進行其生理特性、最適生長條件、最適產酸力、代謝產物及含量之探討,並且比較Bacillus subtilis var. natto與融合株之納豆激酶活性,及對碳氫化合物和多氯聯苯分解利用性之探討。
結果在生理特性方面顯示,融合株比親株 Lactobacillus bulgaricus增加了對potato starch、xylitol、cellobiose、erythritol、dulcitol等碳源的利用能力,而融合株對galactose、glucose、maltose、salicin、saccharose、1-0-α-D-glucopyranoside、potato starch等碳源的利用性比Lactobacillus bulgaricus、Bacillus subtilis var. natto都要好。氮源之利用性方面,融合株比Lactobacillus bulgaricus增加了對(NH4)2SO4、NaNO3、NH4NO3等氮源之利用性,但對有機氮源之利用性比無機氮源好,尤其對yeast extract之利用性最好。碳氫化合物利用性方面,融合株比 Lactobacillus bulgaricus增加了對n- heptane、hexane、benzene、toluene等之利用性。
融合株最適生長條件為培養於pH 8的培養基中、30 ℃振盪培養生長最好。最適產酸力條件是在含有3 % 澱粉及3 % yeast extract、pH 8的培養基中,於37 ℃靜置培養之產酸力較高。
分析融合株之代謝產物結果顯示,融合株靜置培養之代謝產物有草酸0.043 %、乳酸0.36 %、醋酸0.014 %、丁酸1.3 %,及一些未知產物,丁酸產量為乳酸之3.61倍(1.3/0.36);振盪培養之代謝產物有草酸0.035 %、乳酸0.04 %、醋酸0.12 %、丁酸1.01 %及一些未知產物,丁酸量為乳酸之25.25倍(1.06/0.04)。融合株靜置培養所產生之草酸、乳酸、醋酸、丁酸產量皆比振盪培養高,静置培養產生之丁酸與乳酸的比值相差不大。振盪培養產生之乳酸量很低,但丁酸與乳酸產量之比值有明顯差異。融合株培養於碳氫化合物培養基中,皆能產生丁酸。
將Lactobacillus bulgaricus、 Bacillus subtilis var. natto及融合株分別培養於含多氯聯苯之水相及水相加培養基中,比較其對多氯聯苯分解性,融合株顯示對多氯聯苯具有分解性。
將Lactobacillus bulgaricus、 Bacillus subtilis var. natto及融合株分別培養於含不同磺胺劑之培養基中,比較其對磺胺劑之利用性,結果顯示Lactobacillus bulgaricus在含有磺胺劑之培養基中無法生長,而Bacillus subtilis var. natto及融合株皆能生長。
將Bacillus subtilis var. natto及融合株分別培養於不同培養基成分、不同培養時間,比較其產生納豆激酶之活性,Bacillus subtilis var. natto振盪培養於合成培養基中36小時,其納豆激酶活性最高可達63 FU/ml,而融合株振盪培養於合成培養基中60小時,其納豆激酶活性最高只達10.08 FU/ml,融合株需培養較長的時間才能使其納豆激酶活性達到較高,於合成培養基中,Bacillus subtilis var. natto振盪培養36小時、融合株振盪培養60小時,其納豆激酶活性皆為最高,融合株產生之納豆激酶活性比Bacillus subtilis var. natto要低6.25倍。
The contents of abstract in this thesis:
Selected the characteristic of Bacillus subtilis var. natto can utilize starch and good growth in aerobic condition and the Lactobacillus bulgaricus can produce acid characteristic were used for preparation of new fusant, the protoplast fusion method was used to improve the Lactobacillus bulgaricus gene characteristic, to increase the utilization of Lactobacillus bulgaricus, the starch utilizing and high acid produce and growth in aerobic condition and tolerance oxygen of fusant were isolated. Lysozyme (after added ampicillin to block cell wall formation), was used to hydrolysis the cell wall of Lactobacillus bulgaricus and Bacillus subtilis var. natto for preparing protoplast, then protoplast fusion were promoted with PEG 4000, the cell wall regeneration was prepared by buried the fused protoplast in the regeneration medium, the fusant can utilize starch and good growth in aerobic condition were isolated, then their physiological characteristic and optimum growth condition, optimum acids productivity, metabolite and content of fusant were investigated. Nattokinase activity of fusant was compared to Bacillus subtilis var. natto, and the utilization of hydrocarbon and polychlorinated biphenyls decomposition ability were also investigated.
The results of the physiological characterization, Fusant show increasing the utilization ability of carbon source of potato starch, xylitol, cellobiose, erythritol, dulcitol etc compared with Lactobacillus bulgaricus. Fusant utilized ability of carbon source of galactose, glucose, maltose, salicin, saccharose, 1-0-α-D-glucopyranoside, potato starch etc were better than their parent of Lactobacillus bulgaricus, Bacillus subtilis var. natto. Fusant showed increasing the utilization ability of utilizing nitrogen source of (NH4)2SO4, NaNO3, NH4NO3 etc compared with Lactobacillus bulgaricus. Fusant utilized ability of organic nitrogen was better than inorganic nitrogen, it showed the best utilization of yeast extract. Fusant showed increasing the utilization ability of hydrocarbon source of n- heptane, hexane, benzene, toluene etc compared with Lactobacillus bulgaricus.
The growth optimum condition of fusant in the medium was at pH 8 and shaking culture at 30 ℃. The acid production optimum medium contained 3 % potato starch and 3% yeast extract at pH 8 and with stationary culture at 37 ℃.
The metabolite analysis results of fusant with stationary culture at 37 ℃produced oxalic acid 0.043 %、lactic acid 0.36 %、acetic acid 0.014 %、butyric acid 1.3% and unknown products, but the butyric acid yields was higher than lactic acid 3.61 times(1.3/0.36). Shaking culture at 30 ℃ produced oxalic acid 0.035 %、lactic acid 0.04 %、acetic acid 0.12 %、butyric acid 1.01 % and unknown products, but the butyric acid yields was higher than lactic acid 25.25 times(1.06/0.04). Fusant produced oxalic acid、lactic acid、acetic acid、butyric acid at stationary culture were higher than with shaking culture, but the yields was not obviously difference between butyric acid and lactic acid at stationary culture. Lactic acid yields was very low at shaking culture, the yields was obviously difference ratio their between butyric acid and lactic acid. Fusant could produce butyric acid in the medium contained every kind of hydrocarbon.
Lactobacillus bulgaricus、Bacillus subtilis var. natto and fusant were cultivated in the medium contained polychlorinated biphenyls respectively. Fusant showed the ability to decompose the polychlorinated biphenyls.
Lactobacillus bulgaricus、Bacillus subtilis var. natto and fusant were cultivated in the medium contained different sulfadrugs, the results showed Lactobacillus bulgaricus could not growth, but Bacillus subtilis var. natto and fusant grew in the medium contained different sulfadrugs.
Comparison of the nattokinase activities of Bacillus subtilis var. natto and fusant were cultivated at various medium, difference culture time, respectively the highest nattokinase activity was 63 FU/ml by Bacillus subtilis var. natto in synthetic medium at shaking culture for 36 hours, the highest nattokinase activity was 10.08 FU/ml from fusant in synthetic medium at shaking culture for 60 hours, the highest nattokinase activity of fusant was obtained for longer culture time, The nattokinase activity of fusant was lower than Bacillus subtilis var. natto about 6.25 times when cultivated in the synthetic medium.
目錄
頁次

摘要 I
Abstract IV
誌謝 VII
圖表目錄 XII
壹、前言 1
貳、文獻回顧 2
一、菌種介紹 2
二、菌株的改良方法 5
三、原生質體融合法 5
四、原生質體的特性 8
五、影響原生質體製備之因素 9
六、融合株篩選方法 15
七、融合株確認方法 15
八、有機酸 16
九、碳氫化合物 22
十、多氯聯苯 23
十一、納豆激酶 27
十二、磺胺劑 28
参、材料與方法 30
ㄧ、實驗設計 30
二、實驗材料 31
(一)菌株 31
(二)培養基組成 31
(三)溶液配製 32
(四)實驗使用之藥品 33
(五)HPLC(High performance liquid chromatography) 35
(六)GC(Gas chromatography) 36
(七)儀器設備 37
三、實驗方法 37
(一)菌種培養 37
(二)原生質體之製備 38
(三)原生質體之融合 38
(四)融合株的篩選及繼代 39
(五)融合株的確認 39
1. 形態 39
2. 碳源利用性 39
3. 氮源利用性 39
4. 融合株對澱粉之利用性 39
(六)融合株生長條件之探討 40
(七)融合株產酸力條件之探討 40
(八)融合株發酵型式測試 41
(九)融合株代謝產物之分析 41
(十)其他特性之探討 42
1. 碳氫化合物之利用性 42
2. 多氯聯苯之利用性 42
3. 納豆激酶活性之測定 42
4. 磺胺劑之利用性 43
(十一)其他特性之分析 43
1. 碳氫化合物之代謝產物的分析 43
2. 多氯聯苯殘留率分析 44
3. 磺胺劑殘留率分析 44
4. 羥四環素殘留率分析 45
肆、結果與討論 46
ㄧ、親株之形態及其原生質體 46
(一)Lactobacillus bulgaricus之形態及其原生質體形態 46
(二)Bacillus subtilis var. natto之形態及其原生質體形態 46
二、融合株之確認 51
(一)形態 51
(二)碳源之利用性 53
(三)氮源之利用性 53
(四)融合株對澱粉之利用性 53
三、融合株生長條件之探討 58
(一)融合株之生長曲線 58
(二)氧氣對融合株生長之影響 58
(三)溫度對融合株生長之影響 58
(四)起始pH值對融合株生長之影響 58
(五)氮源對融合株生長之影響 58
(六)澱粉濃度對融合株生長之影響 59
(七)Yeast extract之濃度對融合株生長之影響 59
四、融合株產酸力之條件探討 67
(一)氧氣對融合株產酸力之影響 67
(二)溫度對融合株產酸力之影響 67
(三)起始pH值對融合株產酸力之影響 67
(四)氮源對融合株產酸力之影響 67
(五)澱粉濃度對融合株產酸力之影響 67
(六)不同澱粉濃度靜置、振盪培養對融合株產酸力的影響 68
(七)Yeast extract濃度對融合株產酸力的影響 68
(八)碳氫化合物對融合株產酸力之影響 68
五、融合株發酵型式測試 77
六、融合株之代謝產物的分析 79
(一)靜置培養之代謝產物的分析 79
(二)振盪培養之代謝產物的分析 79
(三)不同靜置培養時間之代謝產物含量的分析 79
(四)不同振盪培養時間之代謝產物含量的分析 79
七、其他特性之探討 84
(一)碳氫化合物之利用性 84
(二)多氯聯苯之利用性 84

(三)Bacillus subtilis var. natto及融合株生產納豆激酶
活性之比較 84
1. Bacillus subtilis var. natto及融合株各別培養於
不同培養基及培養時間中之納豆激酶活性的比較 84
2. Bacillus subtilis var. natto及融合株培養於不同
通氣量及培養時間之納豆激酶活性的比較 85
(四)磺胺劑之利用性 85
八、其他特性之分析 92
(一)碳氫化合物之代謝產物分析 92
(二)多氯聯苯殘留率之分析 92
(三)磺胺劑殘留率之分析 92
(四)田間試驗 93
伍、結論 101
陸、參考文獻 105
柒、作者介紹 114
王正雄、張小萍、洪文宗、李宜樺、黃壬瑰、陳珮珊。1999。台灣地區擬似環境荷爾蒙物質管理及環境流布調查。微生物與環境荷爾蒙研討會論文集 1-25。
王美人、林良平。1989。麴菌原生質體形成、再生及其應用。科學農業 37:180-5。
王昭鈞。1999。有機化學。藝軒圖書出版社。台北市。
王惠如。2004。澱粉利用性保加利亞菌之育種。國立屏東科技大學食品科學系碩士學位論文。
尤新。2001。機能性發酵製品。藝軒圖書出版社。台北市。
方嘉德。2003。儀器分析。滄海出版社。台中市。
呂明怡。2001。以細胞融合法進行酵母育種之研究。國立屏東科技大學食品科學系碩士學位論文。
柯以侃。1996。儀器分析。大揚出版社。台北市。
高文弘。1980。基礎液相色層分析。鴻儒堂出版社。新竹市。
徐惠玲。2005。納豆菌Bacillus subtilis var. natto NPUST B11-2生產納豆激酶之最適培養條件及其生化特性探討。國立屏東科技大學食品科學系碩士論文。
陳怡仁。2000。真菌原生質體。食品工業 32(3):41-7。
陳錦惠。2004。生物轉換之新機能微生物的育種。國立屏東科技大學食品科學系碩士論文。
彭志英。2001。食品生物技術。藝軒圖書出版社P.307-316。台北市。
曾義雄。1993。細菌代謝。藝軒圖書出版社。台北市。
黃進發、廖啟成、許文輝。1993。食品工業。食品工業發展研究所出版P.2-13。
黃添銓、廖麗芳、許承先、馬屏禾、劉雅麗、王怡棻,1998。化學。華杏出版社。台北市。
傅偉光。2000。高效能液相層析在食品分析上之應用。科學與技術 32(12):39-44。
鄧德豐,1987。應用微生物學。睿煜出版社。屏東縣。
劉文佐、林依蓉、邱子權、張碧芬。1999。環境中多氯聯苯分解菌群解析。微生物與環境荷爾蒙研討會論文集 70-9。
歐展吟。2005。澱粉發酵性酵母之創製及其生理特性之探討。國立屏東科技大學食品科學系碩士學位論文。
謝連德。1995。大氣中多氯聯苯化合物特性及粒徑分布之研究。國立屏東技術學院環境工程技術系 碩士論文。
蘇遠志。 2003。納豆菌代謝產物的開發與應用。生物產業 14 (2):117-30。
山本裕司、佐佐木隆、神尾好是。2004。乳酸菌の酸素耐性機構の解明ならびにプロバイオテイクス育種への應用。バイオサインイとインダストリ62:381-4。
佐佐木泰子,2004。抗ピロリ菌活性つ持乳酸菌のレイ解析と酸素耐性機構。バイオサインイとインダストリ62:437-40。
山本裕司ほか。2002。乳酸菌の酸素耐性メカニズム。日本農業化學會誌76:843- 45。
長谷川喜衛、狗田 徹、小蟠 齊、德山泰。1988。細胞融合によるビタミンB12高生產性納豆菌形成。日本農業化學會誌 35:154-9。
Abarnou A, Loizeau V, Leboulenger F, Guellec Le, Madoulet AJ. 2000. Validation of an analytical procedure for polychlorinated biphenyls, coplanar polychlorinated biphenyls and polycyclic aromatic hydrocarbon in environmental samples. Tournal of Chromatography A 886: 153-73.
Anne J, Peberdy JF. 1975. Conditions for induced fusion of fungal protoplast in Polyethylene Glycol solutions. Archives of Microbiology 105: 201-5.
Berset JD, Holzer R. 1996. Determination of coplanar and ortho substituted PCBs in some sewage sludges of Switzerland using HGGC/ECD and HRGC/MSD. Chemosphere 32: 2317-33.
Bevilacqua AE, Califano A.N. 1989. Determination of organic acids in dairy products by high performance liquid chromatography. Journal of Food Science 54: 1077-79.
Blanco FZ, Falcon MS, Gandara JS. 2004. Determination of sulfamethazine in milk by soild phase extraction and liquid chromatographic separation with ultraviolet detection. Food Control 15: 375-78.
Browning M, Wallace DB, Dawson C, Alm SR, Amador JA. 2006. Potential of butyric acid for control of soil-borne fungal pathogens and nematodes affecting strawberries. Soil Biology & Biochemistry 38: 401-4.
Califao AN, Bevilacqua AE. 1999. Freezing low moisture Mozzarella cheese: changes in organic acid content. Food Chemistry 64: 193-8.
Califao AN, Bevilacqua AE. 2000. Multivariate analysis of the organic acids content of Gouda type cheese during ripening. Journal of Food Composition and Analysis 13: 949-60.
Carmen SR, Jean PB. 1983. Cardiolipin content and protoplast fusion efficiency in B.subtilis. FEMS Microbiology Letters 19: 137-41.
Chang BV, Chou SW, Yuan SY. 1999. Microbial dechlorination of polychlorinated biphenyls in anaerobic sewage sludge. Chemosphere 39: 45-54.
Connell H, Lemmon J, Tannock GW. 1988. Formation and regeneration of protoplast and Spheroplast of Gastrointestinal strains of Lactobacilli. Applied and Environmental Microbiology 54: 1615-18.
Cosby WM, Casas AI, Dobrogosz JW. 1981. Formation,Regeneration,and Transfection of Lactobacillus plantarum protoplast.Applied and Environmental Microbiology 54(11): 2599-2602.
Dai MH, Ziesman S, Ratcliffe T, Gill RT, Copley SD. 2005. Visualization of protoplast fusion and quantitation of recombination in fused protoplast of auxotrophic strains of Escherichia coli. Metabolic Engineering 7: 45-52.
Dusan D, Jana Z, Ernest S, Stefan S. 1997. Evaluation of solvent and pH extractive fermentation of butyric acid. Process Biochemistry 32 (3): 245-51.
Eiteman MA, Chastain MJ. 1997. Optimization of the ion exchange analysis of organic acids from fermentation. Analytica Chimica Acta 338: 69-75.
Elzbieta J, Linda E, Gail B. 1985. Protoplast fusion used for the contruction of presumptive polyploids of the D-xylose fermenting yeast Candia shehatae. Current Genetics 9: 313-9.
Evans PJ, Wang HY. 1990. Effects of extractive fermentation on butyric productivity by Clostridium acetobutylicum. Applied Microbiology and Biotechnology 32: 393-7.
Fodor K, Alfoldi L. 1979. Polyethylene-Glycol induced fusion of bacteria protoplast. Molecular & General Genetics : MGG 168: 55-9.
Fredic SC, Melikyan GB. 1998. Methodologies in the study cell-cell fusion. A companion to Methods in Enzymology 16: 215-26.
Fuh MRS, Chan SA. Quantitative determination of sulfonamide in meat by liquid chromatography electrospray mass spectrometry. 2001. Talanta 55: 1127-39.
Fujita M, Nomura K, Hong K, Ito Y, Asada A, Nishimuro S. 1993. Purification and characterization of a strong fibrinolytic enzyme(nattokinase)in the vegetable cheese natto a popular soybean fermented food in Japan. Biochem Biophys 197: 1340-7.
Fujita Y, Okamoto T, Irie R. 1983. Protoplast formation and regeneration in Lactic Streptococci. Agricultural and Biological Chemistry 47(9): 2103-5
Gotz F, Schumacher B. 1987. Improve of protoplast transformation in Staphylococcus carnosus. FEMS Microbiology Letters 40: 285-8.
Groves DP, Oliver SG. 1984. Formation of intergeneric hybrids of yeast by protoplast fusion of Yarroxia and Kluyveromyces species. Current Genetics 8: 49-55.
Hopwood DA, Wright HM, Bibb MJ, Cohen SN. 1977. Genetic recombination through protoplast fusion in Streptomyces. Nature 268: 171-4.
Jari V. 1988. Transformation of Bacillus amyloliquefaciens protoplast with plasmid DNA. FEMS Microbiology Letters 49: 101-5.
Jos MBM, Jan K, Daniel VDL, Gerard V. 1988. Liposome enhanced transformation of Streptococcus lactis and plasmid transfer by intergeneric protoplast fusion of Streptococcus lactis and Bacillus subtilis. FEMS Microbiology Letters 49: 323-29.
Joseph GL, Karen DT, Michael HE. 2003. Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiology Ecology 43: 271-6.
Ju HK, Jun PY, Lei Z, Yi PQ. 2004. Identification of two novel fibrinolytic enzymes from Bacillus subtilis QK02. Comparative Biochemistry and Physiology Part C 137: 65-74.
Kang HC, Park YH, Go SJ. 2003. Growth inhibition of a phytopathogenic fungus, Collectorichum species by acetic acid. Microbiological Research 158: 321-6.
Kim BK, Kang JH, Jin M, Kim HW, Shim MJ, Choi EC. 2000. Mycelial protoplast isolation and regeneration of Lentinus lepideus. Life Sciences 66(14): 1359-67.
Kim W, Choi K, Kim Y, Park H, Choic J, Lee Y. 1996. Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp.strain CK 11-4 screened from chungkook-Jang. Applied and Environmental Microbiology 62: 2482-8.
Kusumegi K, Yoshida H, Tomiyama S. 1998. Inhibitory effects of acetic acid on respiration and growth of Zygosaccharomyces rouxii. Journal of Fermentation and Bioengineering 85: 213-7.
Li S, Fritz JS. 2002. Organic modifiers for the separation of organic acids and bases by liquid chromatography. Journal of Chromatography A 964:91-4.
Liu J, Xing J, Chang Y, Ma Z, Liu H. 2005. Optimization of nutritional conditions for nattokinase production by Bacillus natto NLSSE using statistical experimental methods. Process Biochemistry 40: 2757-62.
Lues JFR, Botha WC, Smit EJ. 1998a. Ion exchange HPLC of cheese- related organic acids in comparison with reverse phase HPLC. Int Dairy Jornal 8: 959-65.
Lues JFR, Botha WC. 1998b. Relationships amongst south African processed, young and matured chedder cheese pertaining to organic acid content and non-starter population.. Food Research International 31: 449-57.
Lues JFR, Botha WC, Smit EJ. 1998. Ion exchange HPLC analysis of a broad spectrum of organic acids from matured chedder cheese and assessment of extraction methods. Food Research International 31: 441-7.
Lues JFR, Bekker ACM. 2002. Mathematical expressions for organic acids in early ripening of a cheddar cheese. Journal of food composition and analysis 15: 11-7.
Lyang JA, Lee W, Bruce MC. 1984. Production and regeneration of Lactobacillus casei protoplast. Applied and Environmental Microbiology 48(5):994-1000.
Mei HY, Kuo CC, Jer YL. 1996. Multifunctional ion exchange stationary phases for high performance liquid chromatography. Journal of Chromatography A 722: 87-96.
Mira KK, veronika A, Milica K, Stanka F. 2001. Determination organic acids in white wines by RP-HPLC. Food Technol Biotechnol 39 (2): 93-9.
Morelli L. 1987. Lactobacillus protoplast transformation. Plasmid 17: 73-5.
Ness JE. 1999. DNA shuffling of subgenomic sequences of subtilisin. Nature Biotechnology 17: 893-6.
Nevado JJ, Penalvo GC, Bernardo FJ. 2000. Simultaneous determination of sulfaquinoxaline, sulfamethazine and pyrimethamine by liquid chromatography. Journal of ChromatographyA 870: 169-77.
Nobyushige N, Kimio I. 2004. Efficient selection of hybrids by protoplast fusion using drug resistance markers and reporter genes in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering 98: 353-8.
Pantuaik R, Gavrilovic V, Perry K, Willem P, Stemmer C, Chris MR, Cardayre D. 2002. Genome shuffling of Lactobacillus for improved acid tolerance. Nature Biotechnology 20: 707-12.
Ross G. 2004. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicology and Environment 59: 275-91.
Stasz TE, Harman GE, Weeden NF. 1988. Protoplast preparation and fusion in two biocontrol strains of Trichoderma harzianum. Mycologia 80 (2): 141-150.
Stefanitsi D, Sakellaris G, Garel JR. 1995. The prescence of two proteinases associated with the cell wall of Lactobacillus bulgaricus. FEMS Microbiology Letters 128: 53-8.
Stoev G, Michailova. 2000. Quantitative determination of sulfonamide residues in foods of animal origin by high performance liquid chromatography with fluorescence detection. 2000. Journal of ChromatographyA 871: 37-42.
Sun QC, Connor CJO, Turner SJ, Lewis GD, Stanley RA, Roberton AM. 1998. The effect of pH on the inhibition of bacterial growth by physiological concentrations of butyric acid: Implications for neonates fed on suckled milk.Chemico-Biological Interactions 113: 117-31.
Tellez-Luis SJ, Moldes AB, Alonso JL, Vazquez M. 2003. Optimization of lactic acid production by Lactobacillus delbrueckii through response surface methodology. Journal Food Science 68: 1454-8.
Tomas PR, Carmen ML, Virginia T, Jesus M. 2004. High performance liquid chromatographic separation and quantification of citric, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection. Journal of Chromatography A 1026:57-64.
Tomas KC, Hynes SH, Ingledew WM. 2002. Influence of medium buffering capacity on inhibition of Saccharomyces cerevisiae growth by acetic and lactic acids. Applied and Environmental Microbiology 68: 1616-23.
Tomoko K, Tetsuyuki K. 2002. Oxalic acid is available as natural antioxidant in some systems. Biochimica et Biophysica Acta 1573: 1-3.
Willen PC. 2002. Genome shuffling of Lactobacillus for improved acid tolerance. Nature 20: 707-12.
Zhang YX. 2002. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644-46.
Zheng N, FU Q, Li Yz, Chang Wb, Wang Zm, Li Tj. 2001.Chromatographic characterization of sulfonamide imprinted polymers. Microchemical Journal 69: 153-8.
Zheng ZL, Zuo ZY, Liu ZG, Tsai KC, Liu AF, Zou GL. 2005. Construction of a 3D model of nattokinase, a novel fibrinolytic enzyme from Bacillus natto: A novel nucleophilic catalytic mechanism for nattokinase. Journal of Molecular Graphics and Modeling 23: 373-80.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top