(3.237.97.64) 您好!臺灣時間:2021/03/03 03:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉冠良
研究生(外文):Guan-Liang Liou
論文名稱:以高解析度衛星影像之陰影量化林分冠層之研究
論文名稱(外文):Using the Shadowing of High Resolution Satellite Imagery to Quantify Stand Canopy Structure
指導教授:陳朝圳陳朝圳引用關係
指導教授(外文):Chaur-Tzuhn Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:76
中文關鍵詞:IKONOS衛星影像陰影比例林分結構次生林
外文關鍵詞:IKONOSShadow fractionStand structureSecondary forest
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
森林物種的多樣性,使得森林的樹冠結構之空間變異複雜,而如何有效量化林分冠層的空間性,為森林生態系功能探討之重要過程。本研究利用IKONOS高解析度衛星影像及陰影指標(Shadow Index, SI),量化南仁山次生林永久樣區林分冠層結構,探討陰影比率(Shadow Fraction, SF)與林分密度、樹高、胸高直徑及胸高斷面積等各項性態值間關係,期建立陰影比例與林分結構之關係模式。
研究結果顯示衛星影像上有大量的陰影分布,且林分結構組成可利用陰影比率敘述性統計量進行描述,陰影比率平均值±S.D.為0.11±0.11,其頻度分布為正 偏歪分布。利用陰影比率,可量化永久樣區林分樹冠結構受東北季風影響所產生的差異,迎風林型與背風林型之陰影比率,經t檢定其間差異極顯著(p<0.01),陰影比率與林分結構之迴歸分析,其結果顯示陰影比率與次生林永久樣區之林分性態值,可建立關係模式 (R2= 0.43~0.56, p<0.01),其中背風林型與陰影比率之相關性,顯然較迎風林型為高。陰影比率與光譜及NDVI的相關性分析結果顯示,陰影比率與紅光段與近紅光段呈現顯著相關,陰影比率與NDVI相關性不顯著。而陰影比率對於量化林分冠層結構顯然較NDVI為佳。利用高解析度衛星影像之陰影比率,能夠有效的探討林分冠層結構介量,其對於大面積的森林調查之資訊提供,有很大的幫助。
The high species diversity forests lead to concomitant spatial variation in canopy structure. It is important to understand the forest ecosystem process through the quantitative data of forest canopy structure. The study applied shadow index and IKONOS high resolution remote sensing data to analyze the relationship between shadow fraction and stand canopy structure, and construct the model of canopy structure and shadow fraction.
The results revealed that there is substantial apparent shadow fraction on the secondary forest viewed from the satellite vantage point. The descriptive statistics of shadow fraction that can be use to character stand canopy structure affect by northeast trades and the difference between leeward and windward stand structure to find out the relationship between shadow fraction and secondary forest. The global mean (±S.D.) of shadow fraction was 0.11±0.11 and that distribution of shadow fractions was skewed. The difference of the above mentioned measurements we used t-test between leeward and windward forests were all statistically significant. There was a significant correlation between shadow fraction and stand structure (with R2=0.43-0.56), the correlation between stand canopy structure and shadow fraction was stronger at leeward wind stand and upper canopy layer stand structure. Multispectral image using both red and near-infrared wavelength region were highly sensitive to shadow fraction, the normalized difference vegetation index (NDVI) was weakly sensitive to shadow fraction. The comparison between shadow fraction and NDVI showed that it is better to quantify stand canopy structure using shadow fraction than NDVI. Using the shadowing of high resolution satellite imagery to quantify stand canopy structure was effective and helpful to the investigation on larger area forest.
摘要 I
Abstract III
誌謝 V
圖表目錄 IX
壹、前言 1
貳、文獻回顧 3
一、林分冠層量化之目的 3
二、衛星影像陰影與光譜反射值之關係 6
三、衛星影像陰影與林分冠層結構之關係 11
四、衛星影像陰影量化之限制與影響因子 16
參、材料方法 18
一、研究區概況 18
(一)地理位置 18
(二)氣候 18
(三)南仁山次生林永久樣區 18
(四)南仁山次生林永久樣區之林分結構 20
三、研究材料 22
(一)IKONOS衛星影像 22
(二)南仁山次生林樣區GIS資料 24
三、研究方法 25
(一)衛星影像陰影指標計算與特徵之萃取 25
(二)衛星影像陰影比率之計算 26
(三)衛星影像陰影比率與林分性態值之關係 26
(四)不同光譜波段及植生指標與衛星影像陰影比率之關係 27
(五)研究流程 28
肆、結果與討論 29
一、衛星影像陰影指標計算與特徵之萃取 29
(一)衛星影像陰影指標之計算與門檻值選定 29
1.衛星影像陰影指標計算 29
2.衛星影像陰影門檻值 32
(二) 衛星影像陰影指標特徵 35
二、衛星影像陰影比率與林分冠層的關係 36
(一)衛星影像陰影比率計算 36
(二)不同林型對衛星影像陰影比率之差異性 38
(三)衛星影像陰影比率與林分性態值之關係模式 45
(四)衛星影像陰影比率與林分冠層之關係 49
三、多光譜影像及植生指標對衛星影像陰影之關係 57
(一)陰影比率與多光譜影像及NDVI之關係 57
(二)衛星影像之植生指標與陰影指標對林分冠層量化之
差異性 63
伍、結論 67
參考文獻 68
作者簡介 76
王雅諄 (2001) 南仁山亞熱帶雨林木本植物生物量之估算。台灣大學植物學研究所碩士論文,86頁。
余蘭君 (2002) 南仁山次生林林分結構之空間變異。屏東科技大學森林系碩士論文,90頁。
吳明洗 (2002) 南仁山次生林樹種組成與空間分布。屏東科技大學森林系碩士論文,90頁。
吳珊樺 (1998) 南仁山亞熱帶雨林短期森林動態之研究。台灣大學植物學研究所碩士論文,86頁。
莊宜家 (2005) 颱風對南仁山森林生態系樹冠干擾之探討。屏東科技大學熱帶農業研究所碩士論文,101頁。
馬仕穆 (2000)以SPOT衛星影像資料推估南仁山生林生態系之葉面積指數及凋落物。屏東科技大學熱帶農業研究所碩士論文,74頁。
洪玄洲 (2003) 南仁山迎風與背風分布樹種生態生理特性的比較。屏東科技大學林研究所碩士論文,164頁。
楊嘉政 (1994) 南仁山熱帶季節性森林的組成、結構和分布類型。台灣大學植物學研究所碩士論文,63頁。
楊榮啟 (1980) 森林測計學。國立編譯館,91頁。
廖德智 (2000) 南仁山次生林永久樣區木本植被之組成。中山大學生物科學系碩士論文,74頁。
張瑋尹 (2003) 南仁生次生林不同冠層間林分結構之空間異質性。屏東科技大學森林系碩士論文,87頁。
葉昱君 (2002)南仁山區低地雨林之樹冠結構。台灣大學植物學研究所碩士論文,70頁。
劉和義 (1997) 全球變遷:南仁山森林生態系研究~次生林永久樣區之設立(I)。行政院國家科學委員會專題研究計劃成果報告。147-149頁。
劉兆昌 (2004) 杉木人工林樹冠結構與生物量之研究。中興大學森林系碩士論文,73頁。
陳朝圳、吳明洗 (2001) 南仁山次生林植群社會生態岐異度與林分結構。屏東科技大學森林學報 39: 49-82。
陳朝圳、馬仕穆 (2001) 以SPOT衛星影像推測南仁山森林生態系葉面積指數。中華林學季刊 34(1): 63-72。
焦國模 (1989) 森林航空測計學。國立編譯館。640頁。
謝長富 (1999) 南仁山森林生態系研究─植物永久樣區之研究(四)。台灣長期生態研究,88年度專題研究計畫成果報告。
謝長富、孫義方、王國雄、蘇夢淮 (1993) 墾丁國家公園熱帶雨林永久樣區之調查。內政部營建署墾丁國家公園管理處保育研究報告。第87號。
謝長富、陳尊賢、孫義方、謝宗欣、鄭育斌、王國雄、蘇夢淮、江裴瑜 (1992) 墾丁國家公園亞熱帶雨林永久樣區之調查。內政部營建署墾丁國家公園管理處保育研究報告。第85號。
謝長富、廖啟政、賴宜鈴 (1996) 墾丁國家公園熱帶雨林永久樣區之調查。內政部營建署墾丁國家公園管理處保育研究報告。第94號。
Adams, J. B., M. O. Smith, and A. R. Gillespie (1993) Imaging spectroscopy: Interpretation based on spectral mixture analysis. In C. M. Pieters, and P. Englert (Eds.), Remote geochemical analysis: Elemental and mineralogical composition New York’ Cambridge University Press 7: 145-166.
Asner, G. P. (1998) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment 64: 234- 253.
Asner, G. P., and A. S. Warner (2003) Canopy shadow in IKONOS satellite observations of tropical forest and savannas. Remote Sensing of Environment 87: 521-533.
Aspinall, R. J., W. A. Marcus, and J. W. Boardman (2002) Considerations in collecting processing and analyzing high spatial resolution hyperspectral data for environmental investigations. Journal of Geographical Systems 4: 15-29.
Baynes, J. (2004) Assessing forest canopy density in a highly variable landscape using Landsat data and FCD Mapper. Australian Forestry 64(4): 247.
Bohlman, S. A., J. B. Adams, M. O. Smith, and D. L. Peterson (1998) Seasonal foliage change in the eastern Amazon basin detected from Landsat Thematic Mapper satellite images. Biotropica 30: 376-391.
Bhat, D. M., M. B. Naik, S. G. Patagar, G. T. Hegde, Y. G. Kanade, and G. N. Hegde (2000) Forest dynamics in tropical rain forests of uttara kannada district in western ghats, india. Current Science 79: 975–985.
Bhuyan, P., M. L. Khan, and R. S. Tripathi (2002) Regeneration status and population structure of rudraksh (elaeocarpus ganitrus roxb.) in relation to cultural disturbances in tropical wet evergreen forest of arunachal pradesh. Current Science 83: 1391–1394.
Chittibabu, C. V., and N. Pathasarathy (2000) Attenuated tree species diversity in human-impacted tropical evergreen forest sites at Kolli hills, Eastern Ghats, India. Biodiversity and Conservation 9: 1493–1519.
Cohen, W. B., and S. N. Goward (2004) Landsat’s role in ecologicalapplications of remote sensing. BioScience 54: 535-545.
Dadhi, L. K., H. A. Yousif, and G. Martien (2004) Assessing the effect of different forest management region on forest condition in Chitwan, Nepal, using satellite remotely sensed data and Forest Canopy Density Mapper. 25th ACRS 2004 C-5.5: 686-691.
Diner, D.J., G. P. Asner, R. Davies, J. P. Muller, B. Pinty, C. B. Schaaf, and J. Stroeve (1999) New directions in earth observing: Scientific applications of multiple-view-angle remote sensing. Bulletin of the American Meteorological Society 80: 2209-2228.
Fitzgerald, G. J., P. J. Pinter Jr., J. H. Douglas., and T. R. Clarke (2005) Multiple shadow fractions in spectral mixture analysis of a cotton canopy. Remote Sensing of Environment 97: 526–539.
Fitzgerald, G. J., S. J. Maas, and W. R. DeTar (2004) Spider mite detection and canopy component mapping in cotton using hyperspectral imagery and spectral mixture analysis. Precision Agriculture 5: 275-289.
Foody, G. M., D. S. Boyd, and M. E. J. Cutler (2003) Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment 85: 463–474.
Gerard, F. F., and P. R. J. North (1997) Analyzing the effects of structural variability and canopy gaps on forest BRDF using a geometrical-optical model. Remote Sensing of Environment 62: 46–62.
Gilabert, M. A., F. J. Garcia-Haro, and L. Melia (2000) A mixture modeling approach to estimate vegetation parameters for heterogeneous canopies in remote sensing. Remote Sensing of Environment 72: 328–345.
Gobron, N., B. Pinty, M. M. Verstraete, J. V. Martonchik, Y. Knyazikhin, and D. J. Diner (2000) Potential of multi angular spectral measurements to characterize land surfaces: conceptual approach and exploratory application. Journal of Geo Physical Research Atmospheres 105: 17539-17549.
Goodwin, N., C. C. Nicholas, and C. Stone (2005) Assessing plantation canopy condition from airborne imagery using spectral mixture analysis and fractional abundance. International Journal of Applied Earth Observation and Geoinformation 7: 11-28.
Goward, S. N., G. D. Cruickshanks, and A. S. Hope (1985) Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sensing of Environment 18: 137-146.
Greenberg, J. A., S. Z. Dobrowski, and S. L. Ustin (2005) Shadow allometry: estimating tree structural parameters using hyperspatial image analysis. Remote Sensing of Environment 97: 15-25.
Guillevic, P., and Gastellu-Etchegorry, J. P. (1999). Modeling BRFD and radiation regime of boreal and tropical forest: II. PAR regime. Remote Sensing of Environment 68: 317–340.
Hall, F. G., D. R. Peddle, and E. F. LeDrew (1996) Remote sensing of biophysical variables in boreal forest stands of Picea mariana. International Journal of Remote Sensing 17: 3077–3081.
Hay, G. J., K. O. Niemann, and G. F. Mclean (1996) An object specific image taxture analysis of hi-resolution forest imagery, Remote Sensing and Environment 55: 108-122.
Honda, K. (2004) A study of the difference among several basin averaged rainfall intensities on the heavy rain, using radar data corrected with ground observations. 環境システム工学専攻・環境システム工学課程修士論文, 6 pp.
Ingram, J. C., T. P. Dawson, and R. J. Whittaker (2005) Mapping tropical forest structure in southeastern Madagascar using remote sensing and artificial networks. Remote Sensing of Environment 94: 491-507.
Isabel, T. A. S. (2002) A spatial analysis of different forest cover types using gis and remote sensing technique: a case study in Shivapuri area, Nepal. International Institute for Geo information Science and Earth observation Enschede, The Netherlands. 84 pp.
Ishii, H., and N. Mcdowell (2002) Age-related development of crown structure in coastal Douglas-fir trees. Forest Ecology and Management 169(3): 257-270.
Leblon, B., b. Lisa, and H. Granberg (1996) Effect of shadowing type on ground-measured visible and near-infrared shadow reflectances. Remote Sensing and Environment 58: 322-328.
Levesque, J., and D. J. King (1999) Airborne digital camera image semivariance for evaluation of forest structure damage at an acid mine site. Remote Sensing and Environment 68: 112-124.
Levesque, J., and D. J. King (2003) Spatial analysis of radiometric fractions from high-resolution multispectral imagery for modeling individual tree crown and forest canopy structure and health. Remote sensing of Environment 84: 589-602.
Maltamo, M., T. Tokola, and M. Lehikoinen (2003) Estimating stand characteristics by combining single tree pattern recognition of digital video imagery and a theoretical diameter distribution model. Forest Science 49(1): 98-109.
Peddle, D. R., F. G. Hall, and E. F. LeDrew (1999) Spectral mixture analysis and geometric optical reflectance modeling of boreal forest biophysical structure. Remote Sensing of Environment 67: 288-297.
Peddle, D. R., S. P. Brunke, and F. G. Hall (2001) A comparison of spectral mixture analysis and vegetation indices for estimating boreal forest biophysical information from airborne data. Canadian Journal of Remote Sensing 27: 627–635.
Pinkard, E. A., and W. A. Neilsen (2003) Crown and stand characteristics of Eucalyptus nitens in response to initial spacing: implications for thinning. Forest Ecology and Management 172(2-3): 215-227.
Rikimaru, A., S. Miyatake, and P. Dugan (1999) Sky is the limit for forest management tool. Tropical Forest Update 9(3): 6-8.
Ripple, W. J. (1985) Asymptotic relationship characteristics of grass vegetation. Photogrammetric Engineering and Remote Sensing 51: 1915-1921.
Roberts, D. A., M. Gardner, R. Church, S. Ustin, G. Scheer, and R. O. Green (1998) Mapping chaparral in the Santa Monica mountains using multiple endmember spectral mixture models. Remote Sensing of Environment. 65: 267-279.
Seed, E. D., and D. J. King (2003) Shadow brightness and shadow fraction relations with effective leaf area index: importance of canopy closure and view angle in mixedwood boreal forest. Remote Sensing 29(3): 324-335.
Song, C., and C. E. Woodcock (2002) The spatial manifestation of forest succession in optical imagery the potential of multiresolution imagery. Remote Sensing of Environment 82: 271-284.
Souza, Jr. C. M., D.A. Roberts, and M. A. Cochrane (2005) Combining spectral and spatial information to map canopy damage form selwctive logging and forest fires. Remote Sensing of Environment 98:329-343.
Space Imaging (2004) IKONOS product_guide. Space Imaging, LLC. 22 pp.
Tsunoyama, S., (2002) Comparing study of forest canopy density and forest-age information in LANDSAT-TM image. 環境システム工学専攻・環境システム工学課程修士論文, 4 pp.
Rikimaru, A., and S. Miyatake (1997) Development of forest canopy density mapping and monitoring model using indices of vegetation, bare soil and shadow. Gisdevelopment.net, Retrieved October 5, 2005, from the World Wide Web:http://www.gisdevelopment.net/aars/acrs/1997/ts5/ts5006pf.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔