跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 01:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:顏瑋利
研究生(外文):Wei-Li Yan
論文名稱:以MODIS衛星光譜資料推估不同乾旱時期植群冠層之水分含量
論文名稱(外文):Estimating the Vegetation Water Content on Different Drought Condition with MODIS Reflectance Data
指導教授:陳朝圳陳朝圳引用關係
指導教授(外文):Chaur-Tzuhn Chen
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:77
中文關鍵詞:地表溫度植生指標近紅外光短波紅外光乾旱監測
外文關鍵詞:Land surface temperatureVegetation indexNear InfraredShortwave infraredDrought monitoring
相關次數:
  • 被引用被引用:10
  • 點閱點閱:616
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
常態化植生指標 (NDVI) 雖然廣泛使用於植群監測之指標,但對於乾旱監測而言,因乾旱對於植群影響具有延遲之現象,NDVI無法監測即時性的乾旱事件。本研究先以控制性試驗,利用手持光譜儀及葉綠素測定器,收集不同乾旱狀態下之葉綠素變化及光譜反應特性,探討乾旱發生之植物葉片之生物物理反應。並利用MODIS衛星影像之紅光、近紅外光、短波紅外光和熱紅外光波段,進行 NDVI、水勢指標 (WI)、常態化差異水指標 (NDWI) 和總體植群水分指標 (GVMI) 之計算,探討不同類型指標對於乾旱反應之敏感度,而乾旱程度之空間分布則以地表溫度(Ts)和NDVI,建立植生指標與最高地表溫度之乾燥邊界,推估不同季節溫度植生乾燥指標 (TVDI) 之空間性變異。結果顯示,在乾旱逆境下,植物葉綠素在未達到永久傷害時,葉綠素和光譜反射率可以建立起相關性。五種指標乾季和濕季在不同土地利用類型,皆有顯著差異(p<0.05),推估TVDI分布圖能呈現清楚的乾旱空間變異,都市開發地區之土壤水分含量,顯然低於森林覆蓋區域,TVDI確實能反應土壤的濕潤狀態,可作為監測乾旱之指標。草生地對於乾旱的反應比森林敏感,WI和植群水分含量有很高的相關性,但會受到冠層結構的影響;草生地之GVMI比NDVI提前3個月偵測到植群含水量之變化(p<0.05),結合近紅外光和短波紅外所推估之指標僅能表示植群含水量之狀態,無法以度量單位表示量的多寡,而NDVI無法表示植群的水分含量,但能提供地表植群之植生量。
The Normalized Difference Vegetation Index (NDVI) is a well-known measure for biophysical variables that has been widely used for vegetation monitoring. However, NDVI is not always an appropriate tool for real-time drought monitoring. Due to a lagged vegetation response to drought, NDVI cannot detect drought events instantaneously. In this study, we used the data of the CI-700 and CM-1000 experiment for chlorophyll variation and reflectance on different drought conditions, and discussed biophysical leaf properties under drought stress. The R, NIR, SWIR and thermal bands of MODIS images were used as data for calculating NDVI, Water Index (WI), Normalized Difference Water Index (NDWI) and Global Vegetation Moisture Index (GVMI). The land surface temperature and NDVI was assessed in order to estimate a drought index of Temperature-Vegetation Dryness Index (TVDI) in different seasons. The TVDI was based on an empirical parameterization of the relationship between land surface temperatures (Ts) and NDVI. The results showed that there were significantly different (p<0.05) in five land use indexes. As expected, there is gradual drought in the dry season in developed areas as well as in forest areas. From this result, we can conclude that the TVDI reflects the soil moisture status, and that it can be used as an index in future drought monitoring. The drought response of the grassland is more sensitive than forests. WI has a high correlation with vegetation water content, but affected by canopy structure and viewing geometry. GVMI of grassland detected changes in vegetation water content three months prior to NDVI. A combination of the SWIR and the NIR is required to calculate vegetation water content. GVMI is not related to the vegetation moisture content expressed as a percentage of water per quantity of biomass. NDVI provides different information (e.g., vegetation greenness), which is not directly related to the quantity of water in the vegetation.
摘要 I
Abstract III
誌謝 V
目錄 VI
圖表目錄 VIII
壹、前言 1
一、研究動機 1
二、研究目的 1
貳、前人研究 3
一、植群乾旱之特性 3
二、植群冠層水分含量之光譜特性 6
(一)植群水分含量 6
(二)常態化差異植生指標 9
(三)近紅外光與短波紅外光 12
三、地表溫度與植生指標對乾旱之影響 16
(一)植生指標與地表溫度 16
(二)Ts/NDVI之空間概念 19
參、研究材料與方法 21
一、研究區域 21
二、研究材料 22
(一)MODIS 衛星影像 22
(二)中央氣象局之氣象站資料 23
(三)土地利用類型之圖層 25
三、研究方法 26
(一)研究流程圖 26
(二)不同乾旱逆境下之植物光譜反應特性 27
(三)不同植群冠層水分含量之近紅外光及短波紅外光 之反應特性 29
(四)地表溫度-植生乾燥模式之應用 31
(五)不同乾旱指標之偵測敏感度探討 34
肆、結果 35
一、不同乾旱逆境下之植物光譜反應特性 35
二、不同植群冠層水分含量之近紅外光及短波紅外光 之反應特性 40
(一)常態化差異植生指標(NDVI) 40
(二)水勢指標(WI) 42
(三)常態化差異水勢指標(NDWI) 43
(四)總體植群水分指標(GVMI) 45
三、地表溫度-植生乾燥模式之應用 47
(一)地表溫度之推導 47
(二)地表溫度-植生乾燥模式之建立 47
(三)乾旱程度之推估 49
四、不同乾旱指標之偵測敏感度探討 52
伍、討論 57
一、不同乾旱逆境下之植物光譜反應特性 57
二、不同植群冠層水分含量之近紅外光及短波紅外光 之反應特性 59
三、地表溫度-植生乾燥模式之應用 61
四、不同乾旱指標之偵測敏感度探討 63
陸、結論 66
參考文獻 67
作者簡介 77
林安秋 (1996) 作物之光合作用。台灣商務印書館股份有限公司,222頁。
許明晃 (2003) 甘藷葉片色素含量與反射光譜關係之研究。國立台灣大學農藝學系博士論文,141頁。
陳朝圳 (1999) 南仁山森林生態系植生綠度之季節性變化。中華林學季刊 32(1): 53-66。
陳意昌、林信輝 (1994) 高爾夫球場常用草種光合作用對土壤水分逆境之反應。中華民國雜草學會會刊 15(2):115-136。
陳榮坤、楊純明 (2002) 植被光譜特徵與植體水分含量之關係。農業試驗所技術服務 50: 7-13。
楊純明、蘇慕蓉 (1997) 水稻族群植冠反射光譜之分析。中華農業氣象4(2):87-95。
廖玉婉、徐善德、林美華、謝永祥、吳弘達、鍾仁彬 (1999) 植物生理學。啟英文化事業有限公司,581頁。
劉賢祥 (1999) 植物生理學。財團法人徐氏文教基金會,480頁。
Bowyer P., and F. M. Danson (2004) Sensitivity of spectral reflectance to variation in live fuel moisture content at leaf and canopy level. Remote Sensing of Environment 92(3): 297-308.
Capehart, W. J., and T. N. Carlson (1997) Decoupling of surface andnearsurface soil water content: a remote sensing perspective. Water Resources Research 33(6): 1383-1395.
Carter, G. A. (1991) Primary and secondary effects of water concentration on the spectral reflectance of leaves. American Journal of Botany 78: 916-924.
Carter, G. A. (1993) Responses of leaf spectral reflectance to plant stress. American Journal of Botany 80(3): 239-243.
Carter, G. A. (1994) Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing 15: 697-703.
Ceccato, P., N. Gobron, S. Flasse, B. Pinty, and S. Tarantola (2002a) Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sensing of Environment 82(2-3): 188-197.
Ceccato, P., S. Flasse, and J. M. Gregoire (2002b) Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sensing of Environment 82(2-3): 198-207.
Ceccato, P., S. Flasse, S. Tarantola, S. Jacquemoud, and J.-M. Grégoire (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment 77(1): 22-23.
Clarke, T. R. (1997) An empirical approach for detecting crop water stress using multispectral airborne sensors. HortTechnology 7(1): 9-16.
Csiszar, I., and J. Kerenyi (1995) The effect of the vegetation index on the daily variationof the active surface temperature. Advance Space Research 16(10): 177-180.
Danson F. M., and P. Bowyer (2004) Estimating live fuel moisture content from remotely sensed reflectance. Remote Sensing of Environment 92(3): 309-321.
Dawson, T. P., P. J. Curran, P. R. J. North, and S. E. Plummer (1999) The propagation of foliar biochemical absorption features in forest canopy reflectance: a theoretical analysis. Remote Sensing of Environment 67(2): 147-159.
Delbart, N., L. Kergoata, T. L. Toana, J. Lhermittea, and G. Picard (2005) Determination of phenological dates in boreal regions using normalized difference water index. Remote Sensing of Environment 97(1): 26-38.
Downing, H. G., G. A. Carter, K. W. Holladay, and W. G. Cibula (1993) The radiative-equivalent water thickness of leaves. Remote Sensing of Environment 46(1): 103- 107.
Eklundh, L. (1998) Estimating relations between AVHRR NDVI and rainfall in East Africa at 10-day and monthly time scales. International Journal of Remote Sensing 19: 563-568.
Elvidge, C. D., and Z. Chen (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sensing of Environment 54(1): 38-48.
Fensholt R., and I. Sandholt (2003) Derivation of a shortwave infrared water stress index from MODIS near- and shortwave infrared data in a semiarid environment. Remote Sensing of Environment 87(1): 111-121.
Francois, P., and V. Eric (2002) Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data. Remote Sensing of Environment 83(1): 112-134.
Friedl, M. A. (2002) Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sensing of Environment 79(2-3): 344-354.
Gao, B.-C. (1996) NDWI - a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment 58(3): 257- 266.
Gillies, R. R., T. N. Carlson, J. Gui, W. P. Kustas, and K. S. Humes (1997) A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. International Journal of Remote Sensing 18: 3145-3166.
Gond, V., D. G. G. De Pury, F. Veroustraete, and R. Ceulemans (1999) Seasonal variations in leaf area index, leaf chlorophyll, and water content; scaling-up to estimate fAPAR and carbon balance in a multilayer, multispecies temperate forest. Tree Physiology 19:673-679.
Goward, S. N., Y. Xue, and K. P. Czajkowski (2002) Evaluating land surface moisture conditions from the remotely sensed temperature-vegetation index measurements: An exploration with the simplified simple biosphere model. Remote Sensing of Environment 79(2-3): 225-242.
Guenther, B., X. Xiong, V. V. Salomonson, W. L. Barnes, and J. Young (2002) On-orbit performance of the Earth observing system moderate resolution imaging spectroradiometer; first year of data. Remote Sensing of Environment 83(1): 16-30.
Gutman, G. G. (1990) Towards monitoring drought from space. Journal of Climate 3:282-295.
Hendry, G. A. F., J. D. Houghton, and S. B. Brown (1987) The degradation of chlorophyll-a biological enigma. NewPhytol 107: 255-302.
Jacquemoud, S., S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, and B. Hosgood (1996) Estimating leaf biochemistry using the PROSPECT leaf optical properties model. Remote Sensing of Environment 56(3): 194-202.
Jang, J.-D., A. A. Viau, and F. Anctil (2003) Comparison of split-window algorithms for the retrieval of surface temperatures from AVHRR data in southern Québec. Canadian Journal of Remote Sensing 30(2): 205-215.
Ji L., and A. J. Peters (2003) Assessing vegetation response to drought in the northern great plains using vegetation and drought Indices. Remote Sensing of Environment 87(1): 85-98.
Kogan, F. N. (1995) Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society 76: 655-668.
Körner, C. (1999) Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems. Springer, Berlin. 344 pp.
Kriegler, F. J., W. A. Malila, R. F. Nalepka, and W. Richardson (1969) Preprocessing transformations and their effects on multispectral recognition. p.97-131. In: Proceedings of the Sixth International Symposium on Remote Sensing of Environment, University of Michigan.
Lambin, E. F., and D. Ehrlich (1996) The surface temperature –vegetation index space for land cover and land-cover change analysis. International Journal of Remote Sensing 17: 463-487.
Laymon, C., D. Quattrochi, E. Malek, L. Hipps, J. Boettinger, and G. McCurdy (1998) Remotely-sensed regional-scale evapotranspiration of a semi-arid great basin desert and its relationship to geomorphology, soils, and vegetation. Geomorphology 21(3-4): 329-349.
Legates, D. R. (2000) Remote sensing in hydroclimatology: an introduction. The Professional Geographer 52: 233-234.
Lillesand, T. M., and R. W. Kiefer (2000) Remote Sensing and Image Interpretation. Fourth Edition. Wiley. 763 pp.
Maracci, G., G. Schmuck, B, Hosgood, and G. Andreoli (1991) Interpretation of reflectance spectra by plant physiological parameters. p.2303- 2306. In: Proceedings of International Geoscience and Remote Sensing Symposium, Remote Sensing: Global Monitoring for Earth Management. June 3-6 1991. Helsinki University of Technology, Espoo, Finland.
Mathema A., I. V. Duren and J. D. Leeuw (2005) Monitoring of peat bog restoration. Proceedings of the 31st International Symposium on Remoter Sensing of Enveironment. Saint Petersburg, Russia.
Moran, M. S., T. Clarke, W. P. Kustas, M. Weltz, and S. A. Amer (1994) Evaluation of hydrologic parameters in a semiarid rangeland using remotely sensed spectral data. Water Resources Research 30(5): 1287- 1297.
Myneni, R., F. Hall, P. Sellers, and A. Marshak (1995) The Interpretation of Spectral Vegetation Indexes. IEEE Transactions on Geoscience and Remote Sensing 33(2): 481-486.
National Wildfire Coordinating Group (1994) Intermediate wildland fire behavior. 360 pp.
Njoroge, J. B., A. Nakamura, and Y. Morimoto (1999) Thermal based functional evalutionof urban vegetation. Journal of Environment Science 22(2): 252-256.
Oke, T. R. (1982) The energetic basis of the urban heat island. Quarterly Journal of the Royal Meteorological Society 108: 1-24.
Paltridge, G. W., and J. Barber (1988) Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data. Remote Sensing of Environment 25(3): 381-394.
Park S., J. J. Feddemab, and S. L. Egberta (2004) Impacts of hydrologic soil properties on drought detection with MODIS thermal data. Remote Sensing of Environment 89(1): 53–62.
Peñuelas, J., I. Filella, C. Biel, L. Serrano, and R. Save (1993) The reflectance at the 950– 970 nm region as an indicator of plant water status. International Journal of Remote Sensing 14: 1887-1905.
Peñuelas, J., I. Filella, L. Serrano, and R. Save (1996) Cell wall elasticity and water index (R970/R900) in wheat under different nitrogen availabilities. International Journal of Remote Sensing 17: 373-382.
Peñuelas, J., J. Pinol, R. Ogaya, and I. Filella (1997) Estimation of plant water concentration by the reflectance water index WI (R900/R970). International Journal of Remote Sensing 18: 2863- 2868.
Peters, A. J., E. A.Walter-Shea, L. Ji, A. Viña, M. Hayes, and M. D. Svoboda (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering and Remote Sensing 68: 71-75.
Prihodko, L., and S. N. Goward (1997) Estimation of air temperature from remotely sensed surface observations. Remote Sensing of Environment 60 (3): 335-346.
Rahman A. F., and J. A. Gamon (2004) Detecting biophysical properties of a semi-arid grassland and distinguishing burned from unburned areas with hyperspectral reflectance. Journal of Arid Environments 58: 597-610.
Rahman A. F., J. A. Gamon, D. A. Sims, and M. Schmidts (2003) Optimum pixel size for hyperspectral studies of ecosystem function in southern California chaparral and grassland. Remote Sensing of Environment 84(2): 192-207.
Ramanjulu, S., N. Sreentvasalu, S. Giridharakumar, and C. Sudhakar (1998) Photosynthetic characteristics in mulberry during water stress and rewatering. Photosynthetica 35(2): 259-263.
Richard, Y., and L. Poccard (1998) A statistical study of NDVI sensitivity to seasonal and interannual rainfall variations in Southern Africa. International Journal of Remote Sensing 19: 2907-2920.
Rouse, J. W., R. H. Haas, J. A. Schell, and D. W. Deering (1973) Monitoring vegetation systems in the Great Plains with ERTS. in Proceedings, Third ERTS Symposium 1: 48-62.
Rundquist, B. C., J. A. Jr. Harrington, and D. G. Goodin (2000) Mesoscale satellite bioclimatology. Professional Geographer 52: 331-334.
Sandholt, I., K. Rasmussena, and J. Andersenb (2002) A simple interpretation of the surface temperature/vegetation index space forassessment of surface moisture status. Remote Sensing of Environment 79(2-3): 213-224.
Serrano, L., S. L.Ustin, D. A. Roberts, J. A.Gamon, and J. Peñuelas (2000) Derivingwater content of chaparral vegetation from AVIRIS data. Remote Sensing of Environment 74(3):570-581.
Sims, D. A., and J. A. Gamon (2003) Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: a comparison of indices based on liquid water and chlorophyll absorption features. Remote Sensingof Environment 84(4):526-537.
Sobrino, J. A., and N. Raissouni (2000) Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International Journal of Remote Sensing 21: 353-366.
Tucker, C. J. (1980) Remote sensing of leaf water content in the near infrared. Remote Sensing of Environment 10(1): 23-32.
Tucker, C. J. (1989) Comparing SMMR and AVHRR data for drought monitoring. International Journal of Remote Sensing 10: 1663-1672.
Ustin, S. L., D. A. Roberts, J. Pinzon, S. Jacquemoud, M. Gardner, G. Scheer, C. M. Castañeda, and A. Palacios-Orueta (1998) Estimating canopy water content of chaparral shrubs using optical methods. Remote Sensing of Environment 65(3): 280-291.
Vermote, E. F., and A. Vermeulen (1999) Atmospheric correction algorithm: Special reflectances (MOD09). ATBD version 4.0. 107 pp.
Vogt, J. V., S. Niemeyer, and F. Somma (2000) Drought monitoring from space p.167-183. In: Vogt, J. V. and F. Somma (Eds.) Drought and Drought Mitigation in Europe. Dordrecht: Kluwer Academic Publishers.
Wang, J., K. P. Price, and P. M. Rich (2001) Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. International Journal of Remote Sensing 22: 3827-3844.
Wilhite, D. A. (2000). Drought as a natural hazard. p.1-18. In: Wilhite D. A. (Ed.), Drought. A Global Assessment, London: Routledge.
Yang, C. M., and M. R. Su (2000) Analysis of spectral characteristies of rice canopy under water deficiency. The 21 Asian Conferences on Remote Sensing Dec 4(8): 13-18
Zarco-Tejada, P. J., C. A. Rueda, and S. L.Ustin (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment 85(1): 109-124.
行政院農委會,農委會出版品,農政與農情第142期。2006年6月18日,取自:http://www.coa.gov.tw/view.php?catid=6427
Earth Observatory. Retrieved July 18, 2006 from the World Wide Web: http://earthobservatory.nasa.gov/Library/MeasuringVegetation/measuring_vegetation_2.html
Hung., T. (2005) MODIS data for drought monitoring in Vietnam. TECOS / IMH (MONRE, VIETNAM). Retrieved September 15, 2005 from the World Wide Web: http://shiba.iis.u-tokyo.ac.jp/labsemi2003/030729_r_tran.pdf
Planck’s equation. Retrieved June 27, 2006 from the World Wide Web: http://library.thinkquest.org/C007571/chinese/advance/background3.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top