跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 05:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家儀
研究生(外文):Jia-Yi Chen
論文名稱:二氧化硫短期熏氣對十七種樹苗葉部形態及生理活動的影響
論文名稱(外文):Responses of Leaf Morphology and Physiological Activities in Seedlings of 17 Tree Species to Short-term Fumigation with Sulfur Dioxide
指導教授:郭耀綸郭耀綸引用關係
指導教授(外文):Yau-Lun Kuo
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:森林系
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:55
中文關鍵詞:空氣污染淨光合作用率氣孔導度葉綠素螢光值葉綠素濃度
外文關鍵詞:Air pollutionNet photosynthetic ratesStomatal conductanceChlorophyll fluorescenceChlorophyll concentration
相關次數:
  • 被引用被引用:4
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:2
二氧化硫是台灣地區主要的空氣污染氣體,對植物的形態、生理及生化活動具有影響。本試驗選用17種樹種之盆栽苗,在人為控制環境下,以二氧化硫600、1000及2000 ppb三種濃度各熏氣處理二天,比較不同樹種的葉部受害病徵,計算植株傷害率(代表植株葉片傷害嚴重程度),並測定各樹苗淨光合作用率、氣孔導度、葉綠素濃度及葉綠素螢光Fv/Fm值等生理活動對二氧化硫處理之反應,由此可判斷各供試樹種對SO2的敏感性與耐性。
所有供試樹種經濃度600 ppb的SO2處理48小時後,其葉部均未出現病徵,但鳳凰木、大花紫薇及稜果榕的光合作用率及氣孔導度僅為處理前的45%以下,其餘14種樹苗該兩生理活動降低程度較輕微。當SO2濃度增加至1000 ppb,黃連木在葉部形態上未出現病徵,苦楝及台灣欒樹則葉部出現白色及灰白色的斑塊,其餘14種樹苗葉部均出現淺褐色或深褐色的斑點或塊狀病徵;植株傷害率以黃連木及楓香最小,台灣欒樹最嚴重;稜果榕的植株傷害率雖僅為20%,然其相對光合作用率及氣孔導度卻已降低到25%以下;鳳凰木及大花紫薇的植株傷害率達90%以上,相對光合作用率及氣孔導度更降低至10%以下,顯示此兩樹種受害最嚴重。楓香、竹柏及黃心柿經濃度1000 ppb的SO2處理後,僅有30%以下的植株傷害率,且各生理活動仍能維持在處理前的70%以上。SO2濃度提高至2000 ppb後,鳳凰木、大花紫薇及烏心石葉片明顯受損且全株落葉,其餘14種樹苗並無全株落葉現象,但在生理上其相對光合作用率及氣孔導度都在30%以下。上述結果顯示鳳凰木、大花紫薇及稜果榕對SO2最為敏感,無論在生理上或外表形態上均易受害;楓香、竹柏及黃心柿耐性較高,似可栽植在大氣含較高SO2的環境。
經比較各樹種在不同SO2濃度處理後的淨光合作用率、氣孔導度、葉綠素濃度及葉綠素螢光Fv/Fm值等四項生理反應,發現在SO2濃度600 ppb處理後,所有樹種的葉綠素濃度與葉綠素螢光Fv/Fm值二個參數,均無明顯改變,但淨光合作用率及氣孔導度卻可反應出各供試樹種生理受SO2抑制狀況。當SO2濃度增加至1000 ppb時,葉綠素螢光Fv/Fm值是一個評估植物對SO2耐性可用的生理指標,若配合淨光合作用率及氣孔導度參數,可當做判斷不同植物對SO2敏感程度及耐性的指標。SO2濃度提高至2000 ppb時,鳳凰木、大花紫薇及烏心石全株落葉,其餘14種樹苗的葉綠素濃度均仍在70%以上,顯示葉綠素濃度不是一個評估植物對SO2耐性的生理指標。
Sulfur dioxide is one of the major air pollution sources in Taiwan. It has effects on the morphology, physiology, and biochemical activities of plants. In this experiment, 17 species of tree seedlings were chosen. They were fumigated, under controlled environment, with 600, 1000, and 2000 ppb of SO2 for two days. We compared injury symptoms of leaves and calculated injury index of different species. We also measured the net photosynthetic rate, stomatal conductance, chlorophyll concentration and chlorophyll fluorescence (Fv/Fm) of each species. These results can be used to determine the sensitivity and tolerance of each tested species to SO2.
After being fumigated with 600 ppb SO2 for 48 hours, leaves of all species did not show any injury symptoms. But the net photosynthetic rates and stomatal conductance of Delonix regia, Lagerstroemia speciosa and Ficus septica reduced to less than 45%, while the other species reduced only slightly, comparing to the condition before treatment. When the SO2 concentrations were increased to 1000 ppb, there were no symptoms appearing on the leaves of Pistacia chinensis, but some white or ashen spots appeared on the leaves of Melia azedarach and Koelreuteria henryi, and some brown spots appeared on the leaves of the other 14 species. The plant injury index of P. chinensis and Liquidambar formosana were the slightest, while that of K. henryi was the most serious. Although the plant injury index of F. septica was only 20%, its relative photosynthetic rates and stomatal conductance drastically reduced to lower than 25%. The plant injury index of D. regia and L. speciosa were more than 90%, and their relative photosynthetic rates and stomatal conductance reduced further to lower than 10%, indicating these two species were the most seriously injured. The plant injury index of L. formosana, Nageia nagi and Diospyros maritima were only less than 30%, and their physiological activities could still maintained at more than 70% of what was before treated with 1000 ppb SO2. When the SO2 concentrations were increased to 2000 ppb, all the leaves in D. regia, L. speciosa and F. septica were obviously injured and fell off, while the leaves in the other species did not fall off. However, relative photosynthetic rates and stomatal conductance were all lower than 30%. The results showed that D. regia, L. speciosa and F. septica were the most sensitive species to SO2, either physiologically or morphologically. L. formosana, N. nagi and D. maritima were the most tolerant species to SO2, so that they can be planted in an environment of higher SO2.
Four physiological activities, including net photosynthetic rate, stomatal conductance, chlorophyll concentration and chlorophyll fluorescence of each species in various concentrations of SO2 were compared. We found that, when treated with 600 ppb SO2, the chlorophyll concentration and chlorophyll fluorescence (Fv/Fm) of all species were not obviously changed, but the net photosynthetic rates and stomatal conductance were suppressed by SO2. When the SO2 concentrations were increased to 1000 ppb, chlorophyll fluorescence (Fv/Fm) could serve as an index for assessing plant tolerance to SO2. If the net photosynthetic rates and stomatal conductance were also taken into consideration, they would serve as an index of sensitivity and tolerance of plants to SO2. When the SO2 concentrations were increased to 2000 ppb, the leaves of D. maritime, L. speciosa and D. regia all fell off, while the chlorophyll concentration of other species still maintained above 70%. These result showed that chlorophyll concentration was not a physiological index to assess plant tolerance to SO2.
摘要 II
Abstract IV
誌謝 VII
目錄 VIII
圖表目錄 XI
壹、前言 2
貳、文獻回顧 4
一、二氧化硫(SO2)之來源與性質 4
二、二氧化硫對植物形態發育之影響 4
三、二氧化硫對植物生理活動之影響 5
(一)光合作用率 5
(二)氣孔反應 6
(三)葉綠素濃度 7
(四)葉綠素螢光反應 8
四、植物耐SO2之機制 10
(一)氣孔運動 10
(二)代謝作用 11
參、材料與方法 13
一、試驗材料 13
二、不同SO2濃度短期熏氣處理 14
三、不同SO2濃度短期熏氣葉片壞疽率及植株傷害率之計算 15
四、植物葉片生理活動耐性之測定 16
(一)淨光合作用率及氣孔導度之測定 16
(二)葉綠素濃度指標值之測定 16
(三)葉綠素螢光值之測定 16
五、資料處理與分析 17
肆、結果 18
一、不同濃度SO2短期熏氣對試驗樹種葉片外表病徵之影響 18
二、不同濃度SO2短期熏氣對試驗樹種生理活動的影響 21
(一)淨光合作用率 21
(二)氣孔導度 23
(三)葉綠素濃度指標值 25
(四)葉綠素螢光值 27
三、在不同SO2濃度處理供試十七種樹苗生理活動相對 百分率的比較 29
(一)相對光合作用率 29
(二)相對氣孔導度 30
(三)相對葉綠素濃度及相對葉綠素螢光值 31
四、不同濃度SO2處理後各樹種植株健康率與葉片各生理 活動相對百分率之關係 32
(一)濃度600 ppb的SO2短期熏氣處理 32
(二)濃度1000 ppb的SO2短期熏氣處理 33
(三)濃度2000 ppb的SO2短期熏氣處理 34
五、供試樹種對SO2熏氣耐性之比較 35
伍、討論 36
一、二氧化硫對植物葉片危害之徵狀 36
二、二氧化硫對植物葉片生理活動之影響 37
(一)光合作用率及氣孔導度 37
(二)葉綠素濃度 38
(三)葉綠素螢光 39
三、各樹種植株健康率與葉片各生理活動之關係 40
四、供試樹種對SO2的敏感性與耐性之評估 41
陸、結論 43
參考文獻 45
附錄 53
作者簡介 56


圖表目錄
圖1 熏氣設備示意圖 15
圖2 不同SO2濃度短期熏氣處理前後17種樹種的相對光合作用率 (與處理前比較) 29
圖3 不同濃度SO2短期熏氣處理前後17種樹種的相對氣孔導度 (與處理前比較) 30
圖4 不同濃度SO2短期熏氣處理前後17種樹種的相對葉綠素濃度 及葉綠素螢光Fv/Fm值(與處理前比較) 31

表1 曾進行SO2熏氣處理之研究所用之SO2濃度 10
表2 二氧化硫短期熏氣試驗所使用的17種樹種 13
表3 各樹種在濃度1000 ppb的SO2熏氣處理後葉片受害徵狀、 葉片壞疽率和植株傷害率 19
表4 各樹種在濃度2000 ppb的SO2熏氣處理後葉片受害徵狀、 葉片壞疽率和植株傷害率 20
表5 供試十七種樹苗在不同濃度SO2處理前後淨光合作用率的比較 22
表6 供試十七種樹苗在不同濃度SO2處理前後氣孔導度的比較 24
表7 供試十七種樹苗在不同濃度SO2處理前後葉綠素濃度指標值 的比較 26
表8 供試十七種樹苗在不同濃度SO2處理前後葉綠素螢光Fv/Fm 值的比較 28
表9 經濃度600 ppb的SO2短期熏氣後植株健康率與葉片各生理 活動相對百分率(與未熏氣前比較) 32
表10 經濃度1000 ppb的SO2短期熏氣後植株健康率與葉片各生理 活動相對百分率(與未熏氣前比較) 33
表11 經濃度2000 ppb的SO2短期熏氣後植株健康率與葉片各生理 活動相對百分率(與未熏氣前比較) 34
表12 供試各樹種在濃度分別為600及1000 ppb的SO2處理後的 耐性指標值 35

附圖1 各樹種在濃度1000 ppb的SO2熏氣處理後葉片受害徵狀 53
附圖2 各樹種在濃度2000 ppb的SO2熏氣處理後葉片受害徵狀 55
參考文獻
朱德民 (1995) 植物與環境逆境。明文書局,380頁。
李貽華、李國欽 (1985) 空氣污染對農作物之影響。科學農業 33(1-2): 60-67。
李貽華、徐慈鴻 (1996) 公害與農業-空氣污染對植物之影響。農業世界 151: 64-67。
吳俊偉、張育森 (2001) 耐陰性植物的選擇與應用。造園季刊 38: 87-94。
林芳立 (1999) 大頭茶對二氧化硫污染抗性之研究。國立中興大學森林學研究所碩士論文,57頁。
姚銘輝、盧虎生、朱鈞 (2002) 葉綠素螢光與作物生理反應。科學農業 50(1-2): 31-41。
孫岩章 (1995) 台灣地區空氣污染對植物之影響。植物保護學會會刊 37: 141-156。
高清、孫岩章、沈秋男 (1998) 木本植物吸收二氧化硫能力之評估(二)。台大實驗林研究報告 12(2): 97-104。
許博行、陳清義 (1990) 二氧化硫對不同綠化樹種葉片擴散阻抗的影 響。中華林學季刊 23(1): 51-61。
張志傑 (1992) 環境生態學。科技圖書股份有限公司,281頁。
張育森、陳玲岑、俞美如、陳帥如 (2004) 葉綠素螢光在植物對空氣污染抗耐性表現上之應用。光合作用研討會論文集,國立台灣大學園藝系、奧登堡股份有限公司主辦。台北:國立台灣大學園藝系。
游碧堉、饒連財 (1980) 從植物對二氧化硫之反應看空氣污染。環境科學 1(3): 71-84。

赫延齡、張向、鄭蔚虹、高玉芝、許龍 (1997) 工廠廢氣- Cl2、SO2的大氣污染對北方常見樹木葉片葉綠素含量的影響。齊齊哈爾師範學院學報 17(1): 56-58。
趙勇、李樹人、孫中黨、裴保安、王新莉、李孝明、李冠宇 (1999) 大氣酸性污染物對樹皮樹葉pH值變化的影響。河南農業大學學報 33(4): 346-349。
劉業經、呂福原、歐辰雄 (1994) 臺灣樹木誌。國立中興大學農學院出版委員會,925頁。
劉艷菊、丁輝 (2001) 植物對大氣汙染的反應與城市綠化。植物學通報18(5): 577-586。
郭寶章 (2000) 用植物來淨化環境。台灣林業 37: 27-34。
郭耀綸、范開翔、黃慈薇、李彥屏、吳惠綸、蔡瑞芬 (2004) 台灣三十種闊葉樹陽葉氣體交換潛力之研究。台灣林業科學 19(4): 375-386。
潘德發、許博行 (1993) 木荷苗木之葉綠素與可溶性蛋白質含量及光合作用速率受二氧化硫的影響。中興大學實驗林研究報 15(2): 1-9。
陳英謙、潘素美 (1998) 行道樹淨化空氣污染能力之研究(一)。台大實驗林研究報告 12(4): 309-316。
陳帥如 (2002) 環境綠化植物對臭氧及二氧化硫之抗耐性比較。國立臺灣大學園藝學研究所碩士論文,140頁。
謝慶芳、林景和、徐國男 (1991) 綠帶植物對窯業廢氣之抵抗性試驗。台中區農業改良場研究彙報 30: 53-69。
環保署 (2004) 空氣品質監測年報。行政院環境保護署。226頁。
鄭安靜 (1985) 二氧化硫對作物之影響及其機制。科學農業 33(1-2): 77-83。
Adams, w. w. Ⅲ., K. Winter, and A. Lanzl (1989) Light and maintenance of photosynthetic competence in leaves of Populus balsamifera L. during short - term exposures to high concentrations of sulfur dioxide. Planta 177: 91-97.
Atkinson, C. J., and W. E. Winner (1990) Interactions of SO2 with other environmental stresses in influencing leaf gas exchange. Oecologia 84: 500-505.
Ashenden, T. W., S. A. Bell, and C. R. Rafarel (1995) Responses of white clover to gaseous pollutions and acid mist: implications setting critical levels and loads. The New Phytologist 130: 89-96.
Agrawal, M., and S. Singh (2003) Deepak Physiological and biochemical responses of two cultivars of wheat to elevated levels of CO2 and SO2, singly and in combination. Environmental Pollution 121: 189-197.
Bennet, J. H., and A. C. Hill (1973) Absorption of gaseous air pollutants by a standardized plant canopy. Journal of the Air Pollution Control Association 23(3): 203-206.
Biscope, P. V., M. H. Unsworth, and H. R. Pinckney (1973) The effects of low concentrations of sulfur dioxide on stomatal behavior in Vicia faba. The New Phytologist 72: 1299-1306.
Black, V. J., and M. H. Unsworth (1979) Effects of low concentrations of sulphur dioxide on net photosynthesis and dark respiration of Vicia faba. Journal of Experimental Botany 30(116): 473-486.
Ball, M. C., J. A. Butterworth, J. S. Roden, R. Christian, and J. G. Egerton (1994) Applications of chlorophyll fluorescence to forest ecology. Australian Journal of Plant Physiology 22: 311-319.
Darrall, N. M. (1986) The sensitivity of net photosynthesis in several plant species to short-term fumigation with sulfur dioxide. Journal of Experimental Botany 37(182): 1313-1322.
Deepak, S. S., and M. Agrawal (2001) Influence of elevated CO2 on the sensitivity of two soybean cultivars to sulphur dioxide. Environmental and Experimental Botany 46: 81-91.
Führer, G., H. -D. Payer, and H. Pfanz (1993) Effects of air pollutants on the photosynthetic capacity of young Norway spruce trees. Response of single needle age classes during and after different treatments with O3, SO2, or NO2. Trees 8: 85-92.
Fang, S. H., and H. W. Chen (1996) Air quality and pollution control in Taiwan. Atmospheric Environment 30(5): 735-741.
Gerini, O., L. Guidi, G. Lorenzini, and G. F. Soldatini (1990) Leaf gas exchange of maize plants fumigated with sulfer dioxide. Journal of Environmental Quality 19: 154-156.
Guardans, R. (2002) Estimation of climate change influence on the sensitivity of trees in Europe to air pollution concentrations. Environmental Science & Policy 5: 319-333.
Grill, D., M. Muller, M. Tausz, B. Strnad, A. Wonisch, and A . Raschi (2004) Effects of sulphurous gases in two CO2 springs on total sulphur and thiols in acorns and oak seedlings. Atmospheric Environment 38: 3775-3780.
Hällgren, J. E., and K. Gezelius (1982) Effects of SO2 on photosynthesis and ribulose bisphosphate carboxylase in pine seedling. Physiologia Plantarum 54: 153-161.
Hüve, K., A. Dittrich, G. Kindermann, S. Slovik, and U. Heber (1995) Detoxification of SO2 in conifers differing in SO2–tolerance a comparison of Picea abies, Picea pungens and Pinus sylvestris. Planta 195: 578-585.
Kropff, M. J., W. L. M. Smeets, E. M. J. Meijer, A. J. A. van der Zalm, and E. J. Bakx (1990) Effects of sulphur dioxide on leaf photosynthesis: the role of temperature and humidity Physiologia Plantarum 80: 655-661.
Kong, F. X., W. Hu, S. Y. Chao, W. L. Sang, and L. S. Wang (1999) Physiological responses of the lichen Xanthoparmlia mexicana to oxidative stress of SO2. Environmental and Experimental Botany 42: 201-209.
Lütz, C., A. Steiger, and D. Godde (1992) Influence of air pollutants and nutrient deficiency on D-1 protein content and photosynthesis in young spruce trees. Physiologia Plantarum 85: 611-617.
Lee, E. H., R. C. Pausch, R. A. Rowland, and C. L. Mulchi (1997) Responses of field-grown soybean (cv.Essex) to SO2 elevated under two atmospheric CO2 concentrations. Environmental and Experimental Botany 37: 85-93.
Muller, R. N., J. E. Miller, and D. G. Sprugel (1979) Photosynthetic response of field-grown soybeans to fumigations with sulphur dioxide. Journal of Applied Ecology 16: 567-576.
Meng, F-R., C. P.-A. Bourque, R. F. Belczewski, N. J. Whitney, and P. A. Arp (1995) Foliage responses of spruce trees to long-term low-grade sulfur dioxide deposition. Environmental Pollution 90(2): 143-152.
Oleksyn, J. (1984) Effects of SO2, HF and NO2 on net photosynthetic and dark respiration rates of scots pine needles of various ages. Photosynthetica 18(2): 259-262.
Panicucci, A., C. Nail, and G. Lorenzini (1998) Differential photosynthetic response of two Mediterranean species (Arbutus unedo and Viburnum tinus) to sulphur dioxide. Chemosphere 36(4-5): 703-708.
Paulsrud, B. (2002) Plant damage from air pollution. Plant Disease 1005: 1-12.
Silvius, J. E., M. Ingle, and C. H. Baer (1975) Sulfur dioxide inhibition of photosynthesis in isolated spinach chloroplasts. Plant Physiologia 56: 434-437.
Saxe, H. (1983) Long-term effects of low levels of SO2 on bean (Phaseolus vulgaris). I. Immission-response pattern of net photosynthesis and transpiration during life-long, continuous measurements. Physiologia Plantarum 57: 101-107.
Singh, S. K., D. N. Rao, M. Agrawal, J. Pandey, and D. Narayan (1991) Air pollution tolerance index of plants. Journal of Environmental Management 32: 45-55.
Shiau, J. F., S. P. Y. Hsieh, S. T. Kao, M. C. Leu, and J. S. Yang (1993) Varietal sensitivities of rice, soybean and corn to sulfur dioxide. Plant Pathology Bulletin 2: 43-51.
Stokes, N. J., P. W. Lucas, and C. N. Hewitt (1993) Controlled environment fumigation chambers for the study of reactive air pollutant effects on plants. Atmospheric Environment 27A(5): 679-683.
Strand, M. (1993) Photosynthetic activity of Scots pine (Pinus sylvestris L.) needles during winter is affected by exposure to SO2 and NO2 during summer. The New Phytologist 123: 133-141.
Sheu, B. H. (1994) Effects of sulfur dioxide on growth, photosynithesis and enzyme activities of Chinese Guger-Tree seedlings. Environmental Pollution 86: 349-354.
Savard, M. M., C. Bégin, and M. Parent (2002) Are industrial SO2 emissions reducing CO2 uptake by the boreal forest? Geology 30(5): 403-406.
Sorimachi, A., K. Sakamoto, H. Ishihara, T. Fukuyama, M. Utiyama, H. Liu, W. Wang, D. Tang, X. Dong, and H. Quan (2003) Measurements of sulfur dioxide and ozone dry deposition over short vegetation in northern China- a preliminary study. Atmospheric Environment 37: 3157-3166.
Savard, M. M., C. Begin, M. Parent, A. Smirnoff, and J. Marion (2004) Effects of Smelter Sulfur Dioxide Emissions: A Spatiotemporal Perspective Using Carbon Isotopes in Tree Rings. Journal of Environmental Quality 33(1): 13-26.
Tausz, M., L. J. De Kok, I. Stulen, and D. Grill (1996) Physiological responses of Norway spruce trees to elevated CO2 and SO2. Journal of Plant Physiology 148: 362-367.
Takagi, M., and K. Gyokusen (2004) Light and atmospheric pollution affect photosynthesis of street trees in urban environments. Urban Forestry Urban Greening 2: 167-171.
Veeranjaneyulu, K., C. N. N’soukpoe-kossi, and R. M. Leblanc (1991) SO2 effect on photosynthetic activities of intact sugar maple leaves as detected by photoacoustic spectroscopy. Plant Physiology 97: 50-54.
Winner, W. E., and H. A. Moony (1980) Ecology of SO2 resistance: III. Metabolic changes of C3 and C4 Artriplex species due to SO2 fumigation. Oecologia 46: 49-54.
Wedler, M., R. M. Weikert, and M. Lippert (1995) Photosynthetic performance, chloroplast pigments and mineral content of Norway spruce(Picea abies(L.)Karst.)exposed to SO2 and O3 in an open-air fumigation experiment. Plant, Cell and Environmental 18: 263-276.
Ziegler, I. (1972) The effect of SO3-- on the activity of ribulose-1, 5-diphosphate carboxylase in isolated spinach chloroplasts. Planta 103: 155-163.
呂勝由 (1998) 台灣地區濱海型工業區綠化實用圖鑑。經濟部工業局。1998年10月26日,取自:http://www.tfri.gov.tw/book/sp095/index.htm
環保署 (2005) 環保法規-空氣污染防治法。行政院環境保護署。2005年5月18日,取自:http://w3.epa.gov.tw/epalaw/index.aspx
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 施振民,〈祭祀圈與社會組織—彰化平原聚落發展模式的探討〉,《中央研究院民族學研究所集刊》第36 期,1973,頁191-206。
2. 卓克華,〈清代士林潘家之發展兼及北臺仕紳交往之網絡關係 (上)〉,《北縣文化》74 期,1995,頁82-112。
3. 林美容,〈一姓村主姓村與雜姓村:台灣漢人聚落型態的分類〉,《臺灣史田野研究通訊》第18 期,1991,頁11-30。
4. 林萬傳,〈士林神農宮之碑林〉,《史聯雜誌》20:186-193。
5. 王世慶,〈從臺灣農田水利的開發看農村社會關係〉,《臺灣文獻》第36 卷第2 期,1985,頁107-150。
6. 卓克華,〈清代士林潘家之發展兼及北臺仕紳交往之網絡關係 (下)〉,《北縣文化》75 期,1996,頁86-105。
7. 陳健一,〈士林開發史〉,《國魂》民國85 年12 月,1996,頁45-49。
8. 富田芳郎,〈臺灣鄉鎮之研究〉,《臺灣銀行季刊》第7 卷第3 期,1955。
9. 曾品滄,〈楊氏習靜樓藏臺灣古書契舉隅--士林地區的拓墾事業與家族〉,《國史館館刊》34 期,臺北:國史館,2003,頁139-152。
10. 黃雯娟,〈清代臺北盆地的水利事業〉,《臺灣文獻》49卷第3期,頁147-169。
11. 楊雲萍,〈楊爾康先生遺著〉,《臺灣風物》第4 卷第5 期,1954,頁46-49。
12. 潘光楷,〈芝蘭新街移建及其他〉,《臺灣風物》第四卷第五期,1954,頁20-21。
13. 簡有慶,〈士林地區的媽祖信仰〉,《臺灣宗教研究通訊》第4 期,蘭臺出版社,2002,第87-122 頁。
14. 李貽華、李國欽 (1985) 空氣污染對農作物之影響。科學農業 33(1-2): 60-67。
15. 李貽華、徐慈鴻 (1996) 公害與農業-空氣污染對植物之影響。農業世界 151: 64-67。