1.王栢村(2002)振動學。全華科技圖書股份有限公司,台北市,第2章。
2.成會明(2004)奈米碳管。五南圖書出版股份有限公司,台北市,676頁。
3.朱屯、王福明、王習東(2003)奈米材料技術。五南圖書出版股份有限公司,台北市,460頁。
4.吳德和、陳政陞、陳信華、陳文照(2005)單壁奈米碳管之振動分析。2005年ANSYS台灣區年度應用研討會與用戶聯誼大會,花連縣,4-51-4-58頁。
5.李輝煌(2000)田口方法品質設計的原理與實務。高立圖書有限公司,臺北縣,85-117頁。
6.杜祥光(2004)氮化鋁填充高導熱複合材料之開發研究。國立成功大學化學工程研究所碩士論文,84頁。7.馬振基(1995)高分子複合材料(上冊)。國立編譯館,台北市,744頁。
8.馬振基(2003)奈米材料科技原理與應用。全華科技圖書股份有限公司,台北市,第5章。
9.許明發、郭文雄(2004)複合材料。高立圖書有限公司,台北縣,500頁。
10.陳依湘(2005)環氧樹酯/二氧化矽混成材料之製備及其在金屬防蝕上之應用研究。中原大學化學研究所碩士論文,75頁。11.陳政陞、吳德和、王栢村、陳文照(2005)MWCNT/Epoxy複合材料懸臂樑之模型驗證。中華民國力學學會第29屆全國力學會議論文集(三),H014-1-H014-8頁。
12.黃建霖(2003)經互穿網狀(IPN)途徑對聚醯亞胺與環氧樹脂二高分子材料低介電化。國立成功大學化學工程研究所碩士論文,165頁。13.黃國偉(2003)最佳製程平均數設定之研究。南台科技大學工業管理研究所碩士論文,99頁。14.黃德歡(2002)改變世界的奈米技術。瀛舟出版社,台北市。
15.賴柏洲(1999)基本電學。全華科技圖書股份有限公司,台北市,第3章。
16.賴耿陽(1993)。環氧樹脂應用實務。復漢出版社,台南市,451頁。
17.羅錦興(1999)田口品質工程指引。中國生產力中心,臺北縣,1-37頁。
18.蘇百增(1994)基本電學。千立出版社,高雄縣,438頁。
19.蘇朝墩(2005)品質工程。中華民國品質學會,台北市,431頁。
20.Allaoui, A., S. Bai, H. M. Cheng, and J. B. Bai (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Composites Science and Technology 62: 1993-1998.
21.Breton, Y., G. Désarmot, J. P. Salvetat, S. Delpeux, C. Sinturel, F. Béguin, and S. Bonnamy (2004) Mechanical properties of multiwall carbon nanotubes/epoxy composites: influence of network morphology. Carbon 42: 1027-1030.
22.Cornwell, C. F., and L. T. Wille (1997) Elastic properties of single-walled carbon nanotubes in compression. Solid State Communications 101(8): 555-558.
23.Ebbesen, T. W., and P. M. Ajayan (1992) Large-scale synthesis of carbon nanotubes. Nature 358: 220-222.
24.Ebbesen, T. W., H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio (1996) Electrical conductivity of individual carbon nanotubes. Nature 382: 54-56.
25.Fan, S., M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. Dai (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science 283(5401): 512-514.
26.Hsu, W. K., M. Terrones, J. P. Hare, H. Terrones, H. W. Kroto, and D. R. M. Walton (1996) Electrolytic formation of carbon nanostructures. Chemical Physics Letters 262: 161-166.
27.Iijima, S. (1991) Helical microtubules of graphitic carbon. Nature 354: 56-58.
28.Iijima, S., C. Brabec, A. Maiti, and J. Bernholc (1996) Structural flexibility of carbon nanotubes. The Journal of Chemical Physics 104(5): 2089-2092.
29.Jin, Y., and F. G. Yuan (2003) Simulation of elastic properties of single-walled carbon nanotubes. Composites Science and Technology 63: 1507-1515.
30.Krishnan, A., E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy (1998) Young’s modulus of single-walled nanotubes. Physical Review B 58(20): 14013-14019.
31.Lau, K. T., M. Chipara, H. Y. Ling, and D. Hui (2004) On the effective elastic moduli of carbon nanotubes for nanocomposite structures. Composites: Part B 35: 95-101.
32.Liao, Y. H. (2003) Processing technique and mechanical properties of functionalized SWNT-reinforced composites. MS thesis. Ames, Florida: The Florida State University, Department of Industrial Engineering.
33.Liu, J. Z., Q. Zheng, and Q. Jiang (2001) Effect of a rippling mode on resonances of carbon nanotubes. Physical Review Letters 86(21): 4843-4846.
34.Ounaies, Z., C. Park, K. E. Wise, E. J. Siochi, and J. S. Harrison (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Composites Science and Technology 63: 1637-1646.
35.Poncharal, P., Z. L. Wang, D. Ugarte, and W. A. D. Heer (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283: 1513-1516.
36.Saether, E., S. J. V. Frankland, and R. B. Pipes (2003) Transverse mechanical properties of single-walled carbon naontube crystals. Part I: determination of elastic moduli. Composites Science and Technology 63: 1543-1550.
37.Sandler, J., M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle (1999) Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40: 5967-5971.
38.Song, Y. S., and J. R. Youn (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43: 1378-1385.
39.Thess, A., R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley (1996) Crystalline ropes of metallic carbon nanotubes. Science 273(5274): 483-487.
40.Tsotra, P., and K. Friedrich (2003) Electrical and mechanical properties of functionally graded epoxy-resin/carbon fibre composites. Composites: Part A 34: 75-82.
41.Valentini, L., and J. M. Kenny (2005) Novel approaches to developing carbon nanotube based polymer composites: fundamental studies and nanotech applications. Polymer 46: 6715-6718.
42.Wang, G. W., Y. P. Zhao, and G. T. Yang (2004) The stability of a vertical single-walled carbon nanotube under its own weight. Materials and Design 25: 453-457.
43.Wang, X. Y., and X. Wang (2004) Numerical simulation for bending modulus of carbon nanotubes and some explanations for experiment. Composites: Part B 35: 79-86.
44.Wang, Z. L., R. P. Gao, P. Poncharal, W. A. D. Heer, Z. R. Dai, and Z. W. Pan (2001) Mechanical and electrostatic properties of carbon nanotubes and nanowires. Materials Science and Engineering C 16: 3-10.
45.Wong, E. W., P. E. Sheehan, and C. M. Lieber (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277: 1971-1975.
46.Wu, D. H., W. T. Chien, C. S. Chen, and H. H. Chen (2006) Resonant frequency analysis of fixed-free single-walled carbon nanotube-based mass sensor. Sensors and Actuators A 126: 117-121.
47.Zhang, Z., J. Peng, and H. Zhang (2001) Low-temperature resistance of individual single-walled carbon nanotubes: A theoretical estimation. Applied Physics Letters 79(21): 3515-3517.
48.Zhou, X., E. Shin, K. W. Wang, and C. E. Bakis (2004) Interfacial damping characteristics of carbon nanotube-based composites. Composites Science and Technology 64: 2425-2437.