跳到主要內容

臺灣博碩士論文加值系統

(44.220.247.152) 您好!臺灣時間:2024/09/15 11:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:詹曜瑋
研究生(外文):Yao-Wei Chan
論文名稱:低溫快速萃取之應用研究
論文名稱(外文):Studies on the Application of Low Temperature Rapid Extraction System
指導教授:蔡循恒蔡循恒引用關係
指導教授(外文):Hsun-Heng Tsai
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:57
中文關鍵詞:微波低溫萃取電漿殺菌
外文關鍵詞:Microwavelow temperature extractionplasma sterilization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:347
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要以低溫快速萃取系統進行相關應用研究及分析,探討在真空微波加熱條件下,材料內部及外界溫度之變化,以及材料含水率與微波功率間之關係;另一方面,針對本系統萃取出之精油與蒸餾法所獲得之精油,進行相關之測定,以瞭解兩者之間精油成分與萃取量之不同,並藉由低壓來產生電漿,測試低壓電漿殺菌法於本研究中之可行性。
由實驗結果可知,當利用微波加熱材料時,材料中之水分由於真空低壓之影響,而使水分由材料內部向外界移動,且微波可穿透材料,直接對內部水分進行加熱;不但可大幅降低乾燥時間,並於低溫乾燥條件下保存材料之風味與外觀;在低溫快速萃取方面,獲得之精油與蒸餾法所得之精油比較,發現兩者之間並無顯著差異性,且可將萃取時間由90分鐘縮短為30分鐘;最後在低壓電漿殺菌實驗中,證實本實驗所產生之電漿可在1秒內將枯草桿菌由原先之170個存活菌落數快速降低至10個以下,並於180秒後完全滅菌,達到殺菌之效果。
This research mainly carries on relevant application and analysis of the low-temperature rapid extraction system. Discuss of the conditions under the vacuum microwave heating, the changes of temperature inside the material and chamber, as well as the relationship between material moisture content and the power of microwave; on the other hand, we have determined the essential oil which obtained from low temperature rapid extraction system and steam distillation, compared the variation of essential oil composition between two methods. Finally, this research utilized the plasma effect that induced by low pressure to test the feasibility of the plasma sterilization.
From the experimental result, when utilizing microwave to heat materials, the moisture in the material was influenced with the vacuum low-pressure, and make the moisture move to the external from the inside of the material, as well the microwave can pierce through the material, heat the inside moisture directly; not only can reduce the drying time substantially, but also keep the flavor and appearance of the material under the drying conditions on low temperature. In the low temperature rapid extraction, the essential oil obtained is compared with the steam distillation, find that has no obvious variation between the two, and reduce the extracting time from 90 minutes to 30 minutes; finally in the plasma sterilization experiment of low pressure, verify the plasma that produced from this experiment can reduce the colony forming units of bacillus from 170 to 10 rapidly in 1 s, and in the complete sterilization after 180 s, reach the result of disinfecting.
摘要…I
Abstract…II
誌謝…IV
Table of Contents…V
List of Tables…VIII
List of Figures…IX
Index of Symbol…XI
Chapter 1 Introduction…1
1.1 Background…1
1.2 Motivations…3
1.3 Literature Reviews…3
1.4 Thesis Arrangement…6
Chapter 2 Theoretical Analysis…7
2.1 Microwave Theory…7
2.1.1 Dipolar Polarization…9
2.1.2 Conduction Mechanism…10
2.1.3 Interfacial Polarization…10
2.1.4 Compared with Tradition Heating and Microwave Heating...11
2.2 Extraction Theory…13
2.2.1 Soxhlet Extraction…13
2.2.2 Supercritical Fluid Extraction (SFE)…15
2.2.3 Microwave-assisted Extraction (MAE)…16
2.3 Plasma Sterilization Mechanisms…19
Chapter 3 Microwave Power and Extraction Factors…21
3.1 Magnetron…21
3.2 Maxwell’s Equations…22
3.3 Plane Waves…24
3.4 Microwave power…25
3.5 The Influence Factor of the Extract Mechanism…26
3.5.1 Selection of Extraction Conditions…26
3.5.2 Selection of Operation Mode…27
3.5.2.1 Cross Current Operation…27
3.5.2.2 Counter Current Operation…30
Chapter 4 Experimental System…32
4.1 The Low Temperature Rapid Extraction System…32
4.1.1 The Microwave Generated Mechanism…34
4.1.2 The Vacuum Chamber and Pump…35
4.1.3 The Extraction and Cooler System…37
4.1.4 The Plasma Sterilization System…38
4.2 Materials and Methods…39
4.2.1 Plant Material…39
4.2.2 Microwave Drying System and Procedure…41
4.2.3 Gas Chromatography Identification…41
4.2.4 Plasma Sterilization Test…42
Chapter 5 Results and Discussion…43
5.1 The Phenomenon of Microwave Drying Experiment…43
5.1.1 Effect of Material Load on Drying Procedure…43
5.1.2 Effect of Microwave power…44
5.1.3 Variation in Temperature During the Microwave Drying…46
5.2 Microwave-assisted Extraction…46
5.2.1 Extraction Yield and Time…46
5.2.2 Composition of Essential Oil…47
5.3 The Effect of Plasma Sterilization…49
Chapter 6 Conclusions…52
Reference…54
Biosketch of Author…57
1. 田育彰 (2003) 固定生醫單體之生物活性與結構穩定性之探討。中原大學醫學工程研究所碩士論文。第12頁。
2. Ben G. R., J. R. Roth, T. C. Montie, K. K. -Wintenberg, P. P.-Y. Tsai, D. J. Helfritch, P. Feldman, D. M. Sherman, F. Karakaya, and Z. Chen (2000) Sterilization and Plasma Processing of Room Temperature Surfaces with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). Surface and Coatings Technology. Vol. 131: 528-42.
3. Chen S. S., and M. Spiro (1994) Study of microwave extraction of essential oil constituents from plant material. J. Microw. Power Electromagn. Energy 29 (4): 231-241.
4. Chen S. S., and M. Spiro (1995a) Kinetics of microwave extraction of rosemary leaves in hexane, ethanol and a hexane + ethanol mixture. Flavour Fragrance J. 10: 101-112.
5. Chen S. S., and M. Spiro (1995b) Kinetics of isothermal and microwave extraction of essential oil constituents of peppermint leaves in several solvent systems. Flavour Fragrance J. 10:259-272.
6. Drouzas A. E. and H. Schubert (1995) Microwave Application in Vacuum Drying of Fruits. Journal of Food Engineering.28: 203-209.
7. Feng H., and J. Tang, (1998) Microwave finish drying of diced apple in a spouted bed. Journal of Food Science. 63: 679-683.
8. Feng H., T. Tang, and R. P. Cavalieri (2002) Dielectric properties of dehydrated apples as affected by moisture and temperature. Transaction of ASAE. 45: 129-135.
9. Giese J. (1992) Advances in microwave food processes. Food Technol. 46 (9): 118-23.
10. Jai H. C., H. Inho, B. H. Koo, L. M. Hee, H. D. -Wook, P. J. –Chul, L. I. –Seob, S. K. Moon, and L. Y. Sik (2005) Analysis of sterilization effect by pulsed dielectric barrier discharge. Journal of Electrostatics. 64: 17-22.
11. Kingston H. M., and S. J. Haswell (1997) Microwave Enhanced Chemistry: Fundamentals, Sample Preparation and Applications. American Chemical Society.
12. Laroussi M., G. S. Sayler, and B. B. Glascock (1999) Images of biological samples undergoing sterilization by a glow discharge at atmospheric pressure. IEEE Trans. Plasma Sci. 27:34-35.
13. Luque de Castro M. D., M. M. J. Carmona, and V. Fernandez-Perez (1999) Towards more rational techniques for the isolation of valuable essential oils from plants. Trends Anal. Chem. 18:708-716.
14. Marie E. L., F. Chemat, and J. Smadja (2004) Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. Journal of Chromatography A. 1043: 323-327.
15. Mendis D. A., M. Rosenberg, and F. Azam (2000) A note on the possible electrostatic disruption of bacteria. IEEE Trans. Plasma Sci. 28:1304-1306.
16. Moisan M., J. Barbeau, S. Moreau, J. Pelletier, M. Tabrizian, and L. H. Yahia (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. J. Pharmaceutics. 226 (1-2):1-21.
17. Montie T.C., K. K. Wintenberg, and J. R. Roth (2000) An overview of research using the one atmosphere uniform glow discharge plasma (OAUGDP) for sterilization of surfaces and materials. IEEE Trans. Plasma Sci. 28:41-50.
18. Pare J. R., M. Sigomin, and J. Lapointe (1991) Microwave assisted natural products extraction. US Patent 5.002,784.
19. Park B. J., D. H. Lee, J. -C. Park, I. -S. Lee, K. -Y. Lee, S. O. Hyun, M. -S. Chun, and K. -H. Chung (2003) Sterilization using a microwave-induced argon plasma system at atmospheric pressure. Phys. Plasma 10:4539-4544.
20. Schneider J., K. M. Baumgärtner, J. Feichtinger, J. Krüger, P. Muranyi, A. Schulz, M. Walker, J. Wunderlich, and U. Schumacher (2005) Investigation of the practicability of low-pressure microwave plasmas in the sterilisation of food packaging materials at industrial level. Surface & Coatings Technology. 200:962-966.
21. Sharma G. P., and S. Prasad (2001) Drying of garlic (Allium sativum) cloves by microwave-hot air combination. Journal of Food Engineering. 50: 99-105.
22. Smain C., H. A. Amar, A. Lagha, and D. C. Esveld (2005) Microwave-assisted extraction kinetics of terpenes from caraway seeds. Chemical Engineering and Processing 44: 1320-1326.
23. Valera D., R. Rivas, J. L. Avila, L. Aubert, M. A. Amelot, and A. Usubillaga (2003) The essential oil of Coleus amboinicus Loureiro chemical composition and evaluation of insect anti-feedant effects. CIENCIA 11(2):113-118.
24. Wang J., and S. Kuichuan (2005) Far-infrared and microwave drying of peach. LWT 39: 247-255.
25. Wang Z., D. Lan, L. Tiechun, Z. Xin, W. Lu, Z. Hanqi, L. Li, L.Ying, L. Zhihong, W. Hongju, Z. Hong, and H. Hui (2005) Improved solvent-free microwave extraction of essential oil from dried Cuminum cyminum L. and Zanthoxylum bungeanum Maxim. Journal of Chromatography A. 1102: 11-17.
26. Zlotorzynski A. (1995) The Application of Microwave Radiation to Analytical and Environmental Chemistry. Critical Reviews in Analytical Chemistry. 25:43-75.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top