跳到主要內容

臺灣博碩士論文加值系統

(44.220.181.180) 您好!臺灣時間:2024/09/10 07:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游志華
研究生(外文):Yu,Chih-Hua
論文名稱:鐵-8.7鋁-28.3錳-1.0碳-5.5鉻合金相變化分析
論文名稱(外文):The Analysis of Phase Transformation of the Fe-8.7Al-28.3Mn-1C-5.5Cr Alloy
指導教授:趙志燁趙志燁引用關係
指導教授(外文):Chao,Chih-Yeh
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:51
中文關鍵詞:鐵鋁錳合金碳化鉻顯微結構穿透式電子顯微鏡
外文關鍵詞:Fe-Al-Mn alloychromium carbidemicrostructuretransmission electron microscopy
相關次數:
  • 被引用被引用:5
  • 點閱點閱:208
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本文主要係利用光學顯微鏡(OM)、掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)等分析技術,針對鐵-8.7鋁-28.3錳-1碳-5.5鉻合金相變化進行研究分析。主要研究結果顯示,合金經鍛造加工後,其顯微結構為單相沃斯田鐵(γ)伴隨著加工雙晶。此外,合金經800℃~1000℃之固溶熱處理(SHT)後,其顯微結構為(γ+Cr7C3)相之混合區域,且Cr7C3顆粒在此溫度範圍內隨著固溶溫度的增加而增多。合金經1050℃~1200℃之固溶熱處理後,其顯微結構為γ相結構。隨著固溶溫度增加至1250℃~1400℃,其顯微結構可發現到一些重溶區域伴隨著γ+(α+DO3)組織。
合金經400℃~500℃之時效熱處理後,其顯微結構可觀察到κ相碳化物於基地與晶界析出。此外,當合金經550℃~650℃之時效熱處理後,於基地中可發現γ→(γ+Cr23C6)→(γ+Cr23C6+Cr7C3)與晶界處可發現γ→(DO3+Cr23C6)→(DO3+Cr23C6+Cr7C3)之相變化過程。且隨著時效溫度的增加至700℃~800℃,亦可於基地中發現γ→(γ+Cr7C3)與晶界處發現γ→(DO3+Cr7C3)之相變化過程。
The main purposes of the present studies are to investigate the phase transformation of the Fe-8.7Al-28.3Mn-1C-5.5Cr alloy by using optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the experimental results, the microstructure of the as-forged alloy was single austenite (γ) phase with stress-induced twins. Being solution heat treatment (SHT) in the range of 800~1000℃, the microstructure of the alloy was a mixture of (γ+ Cr7C3) phases. The Cr7C3 particles increased with increasing the SHT temperature. Being SHT in the range of 1050~1200℃, the microstructures of the alloy was a single γ phases. Increasing the SHT temperature to 1250 to 1400℃, some re-solidification region with γ+(α+DO3) phases was found.
During the 400℃~500℃ aging processes, some κ-phase carbides were observed within the austenite matrix and the grain boundaries. When the specimen aged at the temperature to the 550℃ and 650℃, a γ→(γ+Cr23C6)→(γ+Cr23C6+Cr7C3) phase transition was observed within the austenite matrix. Moreover, a γ→(DO3+Cr23C6)→(DO3+Cr23C6+Cr7C3) phase transition was found on the grain boundaries. Increasing the aging temperature to the 700℃~800℃, a γ→(γ+Cr7C3) phase transition was found, and a γ→(DO3+Cr7C3) phase transition found on the grain boundaries.
摘 要 I
Abstract II
Acknowledgement III
Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 The Developments of the Fe-Al-Mn-C Alloys 1
1.2 The Purposes of This Study 5
Chapter 2 Experimental Procedures 6
2.1 Alloy Preparation 6
2.2 Heat Treatment 6
2.3 Microstructures Observation and Diffraction Analyses 6
2.3.1 Optical Microscopy (OM) 6
2.3.2 Scanning Electron Microscopy (SEM) 7
2.3.3 Transmission Electron Microscopy (TEM) 7
Chapter 3 Results and Discussion 9
3.1 Microstructure of the As-forged Specimen 9
3.2 Microstructure of the Specimen During the High-temperature Heat Treatment 9
3.3 Microstructure of the Specimen During the Aging Processes 12
Chapter 4 Conclusions 47
References 48
Brief Introduce of the Author 51
1.Alekseenko, M. F. (1972) High Temperature Studies of Fe-Mn-Al-C Alloys with Different Manganese Concentrations in Air and Nitrogen. Metal Science and Heat Treatment 14(3): 187-192.
2.Altstetter, C. J., A. P. Bentley, J. W. Fourie, and A. N. Kirkbride (1986) Processing and Properties of Fe-Mn-Al Alloys. Materials Science and Engineering 10: 13-25.
3.Cairns, R. E., and J. L. Ham (1963) Aluminum-Manganese-Iron Alloys. U.S. Patent No.3111405.
4.Chang, S. C., and Y. H. Hsiau (1989) The Effect of Al on Mechanical Properties and Microstructure of Fe-32Mn-12Cr-xAl-0.4C Cryogenic Alloys. Journal of Materials Science 24: 1117-1122.
5.Chao, C. Y. (2002) The Low-Density and High-Ductility of Iron Based Materials for Golf Head. Taiwan Patent No.142666.
6.Chao, C. Y., C. N. Hwang, and T. F. Liu (1993a) Grain Boundary Precipitation in an Fe-7.8Al-31.7Mn-0.54C Alloy. Scripta Metallurgical 28: 109-114.
7.Chao, C. Y., C. N. Hwang, and T. F. Liu (1993b) Grain Boundary Precipitation in an Fe-8.0 Al-31.5 Mn-1.05 C Alloy. Scripta Metallurgical 28: 263-268.
8.Chao, C. Y., and T. F. Liu (1991) Grain Boundary Precipitation in an Fe-9.0Al-29.5Mn-1.2Si-Alloy. Scripta Metallurgical 25: 1623-1628.
9.Charles, J., A. Berghezan, and P. L. Dancoine (1981) Phase Decomposition of Rapidly Solidified Fe-Mn-Al-C Austenitic Alloys. Met. Prog. 71-76.
10.Choo, W. K., and D. G. Kim (1987) The Microstructures and Mechanical Properties of an Austenitic Nb-Bearing Fe-Mn-Al-C Alloy Processed by Controlled Rolling. Metallurgical and Materials Transactions A 18: 759-766.
11.Choo, W. K., and K. H. Han (1985) Morphological Evolution of α/γ Interface in Fe-Mn-Al Alloy. Metallurgical and Materials Transactions A 16: 5-12.
12.Han, K. H., J. C. Yoon, and W. K. Choo (1986) The Evidence of Modulated Structure in Fe-Mn-Al-C Austenitic Alloys. Scripta Metallurgical 33-36.
13.Han, K. H., and W. K. Choo (1983) Fe-Mn-Al Precipitation-Hardening Austenitic Alloys. Metallurgical and Materials Transactions A 14: 973-975.
14.Han, K. H., and W. K. Choo (1989) The Massive and Martensitic Transformation in a Carbon-Free Fe-Mn-Al Alloy. Metallurgical and Materials Transactions A 20: 205-213.
15.Han, K. H., W. K. Choo, and D. E. Laughin (1998) A Further Contribution to the Phase Constitution in (Fe0.65Mn0.35)0.83Al0.17-xC Pseudo-Binary System. Scripta Metallurgical 22: 1873-1878.
16.Inoue, A., Y. Kojima, T. Minemura, and T. Masumoto (1981) Age Hardening of an Fe-30Mn-9Al-0.9C Alloy by Spinodal Decomposition. Metallurgical and Materials Transactions A 12: 1245-1250.
17.James, P. J. (1969) Modulated Structure and Magnetic Properties of Age-Hardenable Fe-Mn-Al-C Alloys. Journal of Iron Steel Institut. 12: 54-59.
18.Kao, C. H., and C. M. Wan (1988) Effect of Manganese on the Oxidation of Fe -Mn -Al -C alloys. Journal of Materials Science 23: 744-752.
19.Kayak, G. L. (1969) Fe-Mn-Al Precipitation-Hardening Austenitic Alloys. Metal Science and Heat Treatment 2: 95-97.
20.Kazunori, S., T. Kazuhiro, and I. Yasunobu (1988) Age Hardening of an Fe-30Mn-9Al-0.9C Alloy by Spinodal Decomposition. Scripta Metallurgical 22: 899-902.
21.Kazunori, S., T. Kazuhiro, and Y. I. asunobu (1989) The Study of Work Hardening in Fe-Mn-Al-C Alloys. Materials Science and Engineering 20: 45-50.
22.Krivonogov, G. S., M. F. Alekseyenko, and G. G. Solov*yeva (1975) The Effects of Austenite on the Cryogenic Mechanical Properties of Fe-13Mn-3Al Steel. Physical Metallurgy and Materials Science 39(4): 86.
23.Krzanowski, J. E. (1988) The Effect of Mn and Al Contents on the Solvus of κ Phase in Austenitic Fe-Mn-Al-C Alloys. Metallurgical and Materials Transactions A 19: 1873.
24.Liu, T. F. (1990) Hot-Rolled Alloy Steel Plate. U.S. Patent No. 4968357. (1990) R.O.C. Patent No.42454. (1992) R.O.K. Patent No.53613. (1993) U.K. Patent No.2227495.
25.Liu, T. F., and C. M. Wan (1985) DO3 Structure in an Fe-Al-Mn-Cr Alloy. Scripta Metallurgica 19: 727-732.
26.Liu, T. F., and C. M. Wan (1986) Morphology of A-12αMn Structure. Scripta Metallurgica 1: 423-429.
27.Rivlin, V. G. (1983) The Effects of Austenite on the Cryogenic Mechanical Properties of Fe-13Mn-3Al Steel. International Metals Reviews 28(60): 309-337.
28.Sauer, J. P., R. A. Rapp, and J. P. Hirth (1982) Electrochemical polarization and passive film analysis of austenitic Fe-Mn-Al Alloys steel in aqueous solutions. Oxidation of Metals 18: 285-290.
29.Schmatz, D. J. (1960) Nickel-free Austenitic for Cryogenic Applications: the Fe-23Mn-5Al-0.2C Alloys. Transactions ASM. 52: 898-905.
30.Storchak, N. A., and A. G. Drachinskaya (1977) The Effect of Mn and Al Contents on the Solvus of κ-Phase in Austenitic Fe-Mn-Al-C Alloys. Physical Metallurgy and Materials Science 44(2): 123-128.
31.Sun, Z., H. A. Davies, and J. A. Whiteman (1984) Experimental Study of the Phase Equilibria in the Fe-Al-Mn System. Metal Science 18: 45-51.
32.Tjong, S. C., and C. S. Wu (1986) The Microstructure and Stress Corrosion Creaking Behaviour of Precipitation-Hardened Fe-8.7Al-29Mn-1.04C Alloy in 20%NaCl Solution. Materials Science and Engineering 203-211.
33.Wang, R., M. J. Straszheim, and R. A. Rapp (1984) Development of Oxidation Resistant Fe-Mn-Al Alloys. Oxidation of Metals 21: 71-79.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top