跳到主要內容

臺灣博碩士論文加值系統

(44.192.49.72) 您好!臺灣時間:2024/09/14 07:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭兆男
研究生(外文):Cheng, Chao-Nan
論文名稱:跳躍機器使用能量補充機構在一維方向跳動之模擬與分析
論文名稱(外文):Simulation and Analysis of a One-Dimensional Hopping Machine whit Energy Supplement Mechanism
指導教授:熊京民
指導教授(外文):Hsiung, Chin-Min
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
中文關鍵詞:仿生跳躍機器能量補充機構
外文關鍵詞:bionicshopping machineenergy supplement mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:234
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
跳躍是生物的一種運動模式,藉由強大的肌肉爆發力來驅動身體,使身體脫離地面,以通過障礙地形。袋鼠甚至連行走都是用跳躍的,而且,其跳躍速度又快又很省能量。因此,如果用機械結構來建造一機器腿,並使其能像生物般跳動,而且還能有效運用能量的話,應該會很有研究價值。本研究所建構之跳躍機器,是以彈簧阻尼系統來模擬生物的肌肉,並以凸輪系統做為能量補充機構,來壓縮彈簧,增加彈簧儲存之能量,以模擬生物在跳躍時,先壓縮肌肉儲蓄能量的情況。研究目的是為跳躍機器後續實體實驗,先建立起一個可信的電腦模型,藉由電腦模型的模擬與分析,以了解能量補充機構與跳躍機器跳動的關係。並利用專家系統控制方法,使跳躍機器能保持在同一高度上跳動。電腦模型的模擬參數與數據,並可做為實體模型建構時的的參考值,以節省實驗成本與時間。本研究藉由電腦模擬驗證,研究中所建構之跳躍機器電腦模型是可靠的,而且,可以找出能量補充機構與跳躍機器跳動的關係。利用此關係,可使本研究的跳躍機器保持在同一高度上跳動,這也說明本研究所建構之能量補充機構是有效的。本研究最後也利用能量補充機構與跳躍機器跳動的關係,發展出馬達與能量補充機構參數的選擇程序,以利未來實體模型建構時,做參數選擇之用。
Jumping is a specific kind of biological movement that propels the body with an explosive muscular force to break free from the ground for forward movement or for dealing with topographical obstacles. The kangaroo ‘walks’ by jumping, and its jumping speed is not only very fast and also saves energy. So, if we could build a machine leg based on just such a mechanical structure, that could surpass the movement by human beings, and use energy effectively, it would definitely be worth considering. This research focuses on the building of a hopping machine constructed to imitate biological muscles with a spring damping system, and a cam system used as an energy supplement mechanism to compress the spring, and increase the energy that the spring stores (in order to imitate human jumping), after first compressing muscle storage energy. The research purpose is to build a believable computer model for future substantiation experiments. The relation that energy supplement mechanism and the hopping machine beat is determined by the simulation and analysis of the computer model. As well, we utilize an expert system to control the hopping machine, enabling it to continue jumping to the same height. Simulation parameters and data of the computer model can provide reference value of the entity's model while it is being constructed, in order to save experiment cost and time. The simulated results demonstrate that the computer model is reliable, and can be used to determine the energy supplement mechanism and the relation that the hopping machine beats. Utilizing this relation can permit the hopping machine to keep jumping to the same height, and this proves that the energy supplement mechanism that this research builds is effective. Finally, this research utilizes the energy supplement mechanism and the relation that the hopping machine beats to develop the procedure for choosing the parameters of the motor and energy supplement mechanism in order to construct the entity's model in the future.
摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 IX
圖目錄 X
第1章 緒論 1
1.1 研究背景與動機 1
1.2 研究之目的 1
1.3 文獻回顧 3
1.4 全文概述 6
第2章 跳躍機器的模型架構 7
2.1 模型的簡化 7
2.2 實驗用的實體模型 11
2.2.1 實體模型架構 11
2.2.2 模型重要參數 13
2.3 能量補充機構 15
2.3.1 能量補充機構之架構 16
2.3.2 能量補充機構之重要參數 17
2.4 模型的數學方程式 23
2.4.1 跳躍機器一維跳躍運動方程式 23
2.4.2 跳躍機器的能量方程式 29
2.4.3 跳躍機器馬達的扭力方程式 30
第3章 研究方法 33
3.1 電腦模型建立 33
3.2 電腦模型驗證 36
3.2.1 電腦模型的運動方程式之驗證 36
3.2.1.1 驗證方法 36
3.2.1.2 驗證結果 38
3.2.2 電腦模型的能量方程式驗證 45
3.2.2.1 驗證方法 45
3.2.2.2 驗證結果 46
3.2.3 電腦模型的扭力方程式驗證 51
3.2.3.1 驗證方法 51
3.2.3.2 驗證結果 54
3.3 能量補充機構與跳躍機器跳動關係的分析 55
3.3.1 啟動時間與跳躍機器跳動的關係 55
3.3.2 轉速與跳躍機器跳動的關係 56
3.3.3 偏心輪半徑與跳躍機器跳動的關係 57
3.3.4 偏心距與跳躍機器跳動的關係 57
3.4 建立跳躍機器的控制程序 57
3.5 發展跳躍機器參數選擇程序 65
3.5.1 馬達的參數選定 65
3.5.2 能量補充機構的參數選定 65
第4章 結果與討論 66
4.1 啟動時間與跳躍機器跳動的關係 66
4.1.1 啟動時間對跳躍機器跳回高度之影響 66
4.1.2 啟動時間對跳躍機器能量使用之影響 68
4.1.3 啟動時間對跳躍機器馬達需輸出扭力之影響 79
4.2 轉速與跳躍機器跳動的關係 81
4.2.1 轉速對跳躍機器跳回高度之影響 81
4.2.2 轉速對跳躍機器能量使用的影響 85
4.2.3 轉速對跳躍機器馬達需輸出扭力之影響 92
4.3 偏心輪半徑與跳躍機器跳動的關係 94
4.3.1 偏心輪半徑變化對跳躍機器跳回高度之影響 94
4.3.2 偏心輪半徑變化對跳躍機器能量使用之影響 96
4.3.3 偏心輪半徑改變對馬達需輸出扭力之影響 99
4.4 偏心距與跳躍機器跳動的關係 101
4.4.1 偏心距改變對跳躍機器跳回高度之影響 101
4.4.2 偏心距對跳躍機器能量使用之影響 103
4.4.3 偏心距改變對馬達需輸出扭力之影響 107
4.5 跳躍機器的自控程序驗證 109
4.6 跳躍機器參數選擇程序 116
4.6.1 馬達參數的選擇程序 116
4.6.2 能量補充機構參數的選擇程序 119
第5章 結論與建議 121
5.1 結論 121
5.2 建議 123
參考文獻 124
附錄 127
作者簡介 132
1.洪茂雄(1971)解剖生理學。財團法人台北市徐氏基金會出版部,437頁。
2.崔蓮華(1996)人體解剖學。武陵出版有限公司,303頁。
3.黃龍生(1997)單腳跳動機器之系統分析與設計。國立交通大學電子工程研究所碩士論文,117頁。
4.葉怡成、郭耀煌(1991)專家系統方法應用與實作。全欣資訊圖書股份有限公司,516頁。
5.Ahmadi, M., and M. Buehler (1999) ARL monopod Ⅱrunning robot: control and energetics. Proceeding of the 1999 IEEE International Conference on Robotics and Automation 3: 1689-1694.
6.Alexander, R. M. (1975) The mechanics of hopping by kangaroos. Journal of Zoology 177: 265-303.
7.Desai, K. Ⅴ. (1999) Control of the hopping height in a biologically inspired robot leg. PhD diss. Boston University, Department of Mechanical Engineering.
8.Dummer, R., and M. Berkemeier (2000) Low-energy control of a one-legged robot with 2 degrees of freedom. ICRA 2000: IEEE International Conference on Robotics and Automation 3: 2815-2821. San Francisco, CA, U. S. A.
9.Geng, T., G. Xiong, L. Xie, Y. P. Yang, Y. Guo, and Q. D. Ma (2001) Proposing a novel one-legged robot: Control via Poincare’ map. 40th IEEE Conference on Decision and Control 5: 4184-4185. Orlando, FL, U. S. A.
10.Hyon, S. H., and T. Mita (2002) Development of a biologically inspired hopping robot – “Kenken”. Proceedings of the 2002 IEEE International Conference on Robotics & Automation 4: 3984-3991. Washington, DC, U. S. A.
11.Ishikawa, M., A. Neki, J. I. Imura, and S. Hara (2003) Energy preserving control of a hopping robot based on hybrid port-controlled Hamiltonian modeling. Proceedings of 2003 IEEE Conference on Control Applications 2: 1136-1141. Istanbul, Turkey.
12.Kahn, M. F. (1997) Simulation and control of a one-legged vertical hopping machine. MS thesis. Canada, Kingston : Queen’s University, Department of Mechanical Engineering.
13.Lapshin, V. V. (1991) Motion control of a legged machine in the supportless phase of hopping. Int. J. Robot. Res. 10(4): 327-337.
14.Lapshin, V. V. (1992) Vertical and Horizontal Motion Control of a One-Legged Hopping Machine. Int. J. Robot. Res. 11(5): 491-498.
15.Lebaudy, A., J. Prosser, and M. Kam (1993) Control algorithms for a vertically-constrained one-legged hopping machine. Proceedings of the 32nd IEEE Conference on Decision and Control 3: 2688-2693. San Antonio, TX, U. S. A.
16.Menzel, P., and F. D’Aluisio (2002) Robo sapiens evolution of a new species。商周出版,359頁。
17.Mombaur, K. D., R. W. Longman, H. G. Bock, and J. P. Schloder (2002) Stable one-legged hopping without feedback and with a point foot. 2002 IEEE International Conference on Robotics and Automation 4: 3978-3983. Washington, DC, U. S. A.
18.Ohashi, E., and K. Ohnishi (2004) Motion control in the support phase for a one-legged hopping robot. Proceedings – 8th IEEE International Workshop on Advanced Motion Control, AMC’04 259-262. Kawasaki, Japan.
19.Ohashi, E., and K. Ohnishi (2006) Hopping height control for hopping robots. Electrical Engineering in Japan 155(1): 64-71.
20.Pannu, S., G. Becker, and H. Kazerooni (1995) Stability of a one legged robot using μ- synthesis. Proceedings of the 1995 IEEE International Conference on Robotics and Automation 1: 685-690. Nagoya, Japan.
21.Raibert, M. H. (1986a) Legged robots. Communications of the ACM 29(6): 499-514.
22.Raibert, M. H. (1986b) Legged robots that balance. The United States of America: The MIT Press series in artificial intelligence.
23.Schammass, A., G. A. P. Caurin, and C. M. O. Valente (2001) Control of a one-legged robot with energy savings. Journal of the Brazilian Society of Mechanical Sciences 23(1): 41-48.
24.Wu, Y. H., J. Yang, and H. Aoyama (2005) Design on hopping locomotion mechanism. Guangxue Jingmi Gongcheng/Optics and Precision Engineering 13(5): 548-553.
25.Zeglin, G. (1999) The Bow Leg hopping robot. PhD diss. Carnegie Mellon University, Department of Mechanical Engineering.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top