(3.236.82.241) 您好!臺灣時間:2021/04/13 02:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖駿豪
研究生(外文):Jiung-Hao Liao
論文名稱:墾丁高位珊瑚礁自然保留區森林生態系中凋落物量與土壤養分動態之關係
論文名稱(外文):The relationships between litterfall and soil dynamics on Kenting Uplifted Coral Reef Nature Reserve Forest Ecosystem
指導教授:許正一許正一引用關係
指導教授(外文):Zeng-Yei Hseu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:146
中文關鍵詞:凋落葉分解作用土壤微生物生質量二氧化碳季節性礦化量降雨量有效性二氧化碳季節性礦化量降雨量有效性有機物礦化作用土壤溶液
外文關鍵詞:litter decompositionsoil microbial biomassorganic matter mineralizationsoil solution
相關次數:
  • 被引用被引用:8
  • 點閱點閱:505
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
墾丁高位珊瑚礁自然保留區是台灣面積最大且保留完整的熱帶常綠闊葉雨林生態系。本研究在該保留區之10公頃永久樣區中,選擇四個不同的植物棲息地,其中A區位於平坦的台地,其特徵樹種為大葉山欖(Palaquium formosanum)與茄苳(Bischofia javanica), B區位於隆起珊瑚礁頂,特徵樹種為紅柴(Aglaia formosana)與樹青(Pouteria obovata),C區位於珊瑚礁底之谷地,特徵樹種為血桐(Macaranga tanarius)與土楠(Cryptocarya concinna),而D區位於平坦之谷地,特徵樹種為皮孫木(Pisonia umbellifera)。在各區進行2年(2004年2月至2006年2月)之凋落物量收集、凋落葉分解作用、土壤微生物生質碳(MBC)及氮(MBN)量、土壤碳與氮礦化作用及土壤溶液化學組成之監測,研究目的主要為 : (1)探討凋落物量之季節性變動及其分解過程,(2)了解土壤有機質礦化作用與植物棲息地的關係,(3)說明土壤微生物生質量對凋落物分解動態的影響,及(4)探討土壤養分之有效性、季節變化及流通量。
研究結果指出,四區凋落物量都有明顯的季節性差異,其中以春季(0.34-0.54 ton/ha/month)最低,而在颱風(0.81-1.32 ton/ha/month)及東北季風(0.49-0.69 ton/ha/month)侵襲等季節較高。A與D區之凋落物量明顯高於B與C區,此結果應與B區優勢樹種之抗風性強,C區演替早期樹種之葉面積指數較小有關。在凋落葉分解速率方面,第一年各區凋落葉重量留存率約介於50至45.6%左右,而第二年間介於25.8至18.2%左右,其中第二年凋落葉分解速率較快的原因是隨颱風所挾帶較高的降雨量所致。四區間凋落葉分解速率常數(k)與半衰期都沒有明顯的差異。整體而言,四區凋落葉不同養分之分解速率為: Ca > Mg > N > Na > K > P > mass > C,而年養分回歸量則為: C(221-4483 kg/ha) > Ca(160-324 kg/ha) > N(58.6-123 kg/ha) > K(24.7-41.7 kg/ha)> Mg(16.2-30.6 kg/ha) > Na(5.35-25.0) > P(0.16-1.95 kg/ha)。
四區表土(0-15 cm)之平均MBC量介於477-1135 mg/kg之間,高於其他熱帶森林(149-667 mg/kg),而MBN平均值則介於67.5-81.0 mg/kg之間,與一般熱帶森林(38.0-78.0 mg/kg)相近。四區之表土平均年碳礦化量(即二氧化碳釋出量)為9.10-9.60 ton CO2-C /ha之間,與一般熱帶與亞熱帶雨林相去不逺,但第二年之碳礦化速率明顯高出第一年約4-5倍左右,此現象可能與生態系中土壤水文的驟變以致於優勢菌群改變有關。四區之NO3--N/NH4+-N比值平均介於1.00-3.00之間,而淨氮礦化作用、銨化作用、與硝化作用平均值分別介於-0.12至0.09、-0.04至-0.02、與-0.27至0.08 mg/kg/d之間。各區土壤溶液中之陽離子濃度依順序為Ca > Si > K > Na > Al > Mg> Fe > NH4 > Mn > Zn > Cu,而陰離子則為Cl > SO4 > NO3。整體而言,永久樣區碳與氮之輸入量遠高於輸出量,而使此一生態系保持在一個穩定的動態平衡中。
The Kengting Nature Reserve of Uplifted Coral Reef (KNROUCR) is the largest in area and well protected area for tropic evergreen broad-leaved rain forest in Taiwan. The long-term plot of 10 ha was divided into four habitat types with different species compositions: the autum maple tree (Bischofia javanica)- Taiwan nato tree (Palaquium formosanum) type on the flat terrace whereas was designed as habitat A in this study; the sappan wood (Aglaia formosana) – pouteria (Pouteria abovata) type on the ridge of exposed coral reef, designed as habitat B; the eleplant’s ear (Macar tanarius) – konishi cryptocarya (Cryptocarya concinna) type on the sedimentary basin, designed as habitat C; the pisonia tree (Pisonia umbellifera) type at the bottom of valley, designed as habitat D. Litter productions, and leaf litter decomposition , soil microbial biomass C and N(MBC and MBN), carbon and nitrogen mineralization, and the compositions of soil solution were monitored for 2-year period (Feb. 2004-Feb. 2006) in the four habitats . The aims of this study in the KNROUCR were conducted: (1) to investigate the litter inputs and leaf litter decomposition process in relation to plant habitat types and seasons, (2) to explore the soil organic matter mineralization, (3) to illustrate the influence of soil microbial biomass on the litter decomposition dynamics, and (4) to explore the bioavailability, seasonal dynamics, and flux of soil nutrients.
Experimental results indicated that litterfall in all habitats shows a marked seasonal pattern, with the lowest amounts in spring (0.34-0.54 ton/ha/month) and the highest amounts in the summer (0.81-1.32 ton/ha/month) and winter (0.49-0.69 ton/ha/month) seasons because of typhoon and monsoon. In addition, the litterfall production in habitats A and D was significantly (p<0.05) greater than in habitats B and C. It is probably because the dominant tree species of habitat B are relatively adapted to strong wind, and the leaves survived long on the exposed rock; habitat C was secondary forest which dominated by early succession tree species with lower leaf area index. The litter remaining mass percentage in the first year was from 50% to 45.6%, however in the second year was from 25.8% to 18.2%. The litter remaining mass percentage in the 2nd year was lower than 1st year, because of the larger rainfall from frerquent typhoon events in the 2nd year. Nevertheless, the Olson’s decomposition parameters (k and t50) between the leaf littes of four habitats were not significant. Overall, the leaf litter decomposition rate followed the order by Ca > Mg >N> Na > K > P > mass > C. Additionally, the annual return of nutrient followed the order by C (221-4483 kg/ha) > Ca (160-324 kg/ha) > N (58.6-123 kg/ha) > K (24.7-41.7 kg/ha) > Mg (16.2-30.6 kg/ha) > Na (5.35-25.0 kg/ha) > P (0.16-1.95 kg/ha).
The surface soil (0-15 cm) MBC ranged in 477-1135 mg/kg in each habitat, whereas is higher than those in general tropical forests (149-667 mg/kg), however, the MBN ranged in 65.7-81.0 mg/kg, whereas is similar to those in general tropical forest (38.0-78.0 mg/kg). The rate of C mineralization (the amount of CO2-C production) ranged in 25.0-36.0 g CO2-C/kg/yr, which is not different from tropical and subtropical forests, however, the rate of C mineralization C in the 2nd year was 4-5 folds
than that in the 1st year, because of the dramastic change in soil hydrology in altering doiminant microbes. The NO3--N/NH4+-N ratios ranged in 3-4, and N mineralization, ammonification, and nitrification ranged in (-0.12)-(0.09), (-0.04)-(-0.02), and (-0.27)-(0.08) mg/kg/d. The order of cation concentration in the soil solution is Ca > Si > K > Na > Al > Mg> Fe > NH4 > Mn > Zn > Cu, and it of anion is Cl > SO4 > NO3, respectively. Overall, the input of C and N was much more than the within the study area, so that the forest ecosystem keeps in dynamic balance.
目錄

摘要.....................................................................................................I
Abstract….................................................................................................III
誌謝..........................................................................................................VI
目錄.........................................................................................................VII
表目錄.......................................................................................................X
圖目錄......................................................................................................XI
第1章........................................................................................................1
1.1 研究動機........................................................................................1
1.2 研究目的........................................................................................1
第2章 文獻回顧....................................................................................2
2.1凋落物量及其分解速率.................................................................2
2.2土壤有機物礦化作用.....................................................................5
2.3土壤微生物生質量.........................................................................7
2.4土壤溶液.........................................................................................8
第3章 材料與方法...............................................................................11
3.1研究區概況....................................................................................11
3.1.1 地理位置..............................................................................11
3.1.2 地質......................................................................................11
3.1.3 氣候......................................................................................11
3.1.4 植物相..................................................................................12
3.2研究方法.......................................................................................16
3.2.1 土壤基本理化性質分析......................................................16
3.2.2 凋落物量收集......................................................................19
3.2.3 凋落葉之分解作用..............................................................19
3.2.4 凋落葉元素含量測定.........................................................19
3.2.5 凋落葉重量與元素之相關計算式……………………......20
3.2.6土壤有機質礦化作用...........................................................20
3.2.7土壤微生物生質量碳及氮....................................................21
3.2.8土壤溶液收集與分析...........................................................22
3.2.9 統計分析............................................................................23
第4章 結果與討論...............................................................................24
4.1土壤之基本理化性質....................................................................24
4.2凋落物之季節動態變化................................................................26
4.3凋落葉分解袋之重量留存率........................................................32
4.4凋落葉養分之留存率....................................................................36
4.5凋落葉分解常數............................................................................46
4.6凋落葉養分之回歸量....................................................................50
4.7土壤水分含量之季節動態變化....................................................55
4.8土壤MBC、MBN與MBC/MNB之季節動態變化......................55
4.9土壤二氧化碳釋出量之季節動態變化........................................66
4.10土壤礦化氮之季節動態變化......................................................75
4.11土壤溶液陽離子組成分之季節動態變化..................................93
4.12土壤溶液陰離子組成分之季節動態變化...............................102
4.13碳與氮之養分流通量...............................................................111
第5章 結論........................................................................................114
參考文獻................................................................................................116
作者簡介................................................................................................148
中央氣象局 (2005) 氣候資料年報。第一部份 : 地面資料。
王相華、郭耀綸 (1995) 墾丁高位珊瑚礁原始林下茄苳新生幼苗之族群動態。林業試驗所研究報告季刊,10(4) : 383-389。
王風友、王應篷 (1991) 紅松針闊葉混交木凋落物的生態研究(II) 凋落物養分含量的動態及養分歸還。森林生態系統定位研究第一集,東北林業大學出版 。
伍淑惠 (2004) 墾丁高位珊瑚礁自然保留區的藤本植物。林業研究專訊,10(4) : 26-29。
李世清、李生秀 (2001) 土壤微生物體氮的含量、周轉速率及測定方法。土壤與環境,4 : 83-92。
林世宗 (1998) 棲蘭山闊葉林枯落物及其養分之變動。中華林學季刊,31: 115-130。
林良平 (1987) 土壤中生質之有效測定。土壤微生物學(上冊),國立編譯館,137-170。
林國銓 (1997) 福山闊葉林枯落物及枝葉層動態變化。台灣林業科學,12 : 135-144。
林國銓 (2002) 枯落物的分解-氣候、枯落物化學組成、土壤生物的交互作用。林業研究專訊, 9(2) : 3-6。
周育如 (2003) 惠蓀林場枯落物養分回歸量與分解速率之季節動態變化。國立中興大學森林學研究所碩士論文,43-62頁。
邱文良 (1991) 恆春自然保護區植群之研究。林業試驗所研究報告季刊,6(3) : 203-227。
洪富文 (1992) 森林集水區的養分循環。農委會林業特刊,38 : 7-12。
胡弘道 (1993) 森林土壤學(修訂版)。國立編譯館,309-320頁。
崔君至、陳尊賢 (2004) 東北季風對南仁山森林生態系土壤中碳氮礦化速率及動態變化之影響。土壤肥料通訊,86 : 39-40。
許正一、王相華、伍淑惠、張英琇 (2004) 墾丁高位珊瑚礁自然保留區土壤之化育作用與分類。台灣林業科學,19(2) : 153-64。
莊舜堯、林珈吟、王明光、郭幸榮 (2003) 水分對臺灣塔塔加地區雲杉與鐵杉土壤氮素礦化及硝化的影響。土壤與環境,4 : 175-182。
張正平 (1998) 南仁山低地雨林凋落物之研究。國立台灣大學植物學研究所碩士論文,40頁。
張家豪 (2000) 南仁山低地雨林凋落物分解及有效性養分之研究。國立台灣大學植物學研究所碩士論文,21-37頁。
張華洲 (1997) 惠蓀林場三種林分枯枝落葉量及其養分含量之季節變動。國立中興大學森林學研究所碩士論文,11-39頁。
陳佳慧 (2000) 關刀溪不同林分枯落物及土壤養分含量之動態變化。國立中興大學森林學研究所碩士論文,14-69頁。
陳毓昀 (1998) 南仁山低地雨林凋落物分解之研究。國立台灣大學植物學研究所碩士論文,61-74頁。
廖永綜 (1998) 南仁山森林生態系氮之收支與循環之探。國立屏東科技大學環境工程技術研究所碩士學位論文,30-74頁。
劉棠瑞、蘇鴻傑 (1989) 森林植物生態學。第三版。台灣商務印書館印行,69-70頁。
劉湘瑤 (1994) 南仁山區亞熱帶雨林凋落物量及其養分含量之研究。國立台灣大學植物學研究所碩士論文,48-61頁。
劉興旺、郭幸榮 (1993) 針葉林林地枯枝落葉及腐植質之養分釋出。台大實驗林研究報告,7(3) : 99-113。
顏江河、陳佳惠 (1999) 惠蓀林場三種不同林分枯枝落葉量與枝葉層分解速率之季節變化。林業研究季刊,21(4) : 57-64。
Acenolaza, M. B., and T. R. Angradi (1996) Decomposition and nutrient dynamics of hardwood leaf litter in the Fernow whole-watershed acidification experiment. For. Ecol. Manage. 83: 61-69.
Aceñolaza, P. G., and J. F. Gallardo Lancho (1999) Leaf decomposition and nutrient release in montane forests of northwestern Argentina. J. Tropi. For. Sci. 11: 619-630.
Aerts, R., and D. C. Hannie (1997) Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78 : 244-260.
Ananthakrishnan, T. N. (1996) Forest litter insect communities: Biology and chemical ecology. Science Publishers, Enfield, New Hampshire, USA. 1-10.
Anderson, T. H., and K. H. Domsch (1989) Rations of microbial biomass carbon to total organic carbon on arable soils. Soil Biol. Biochem. 21: 471-479.
Anderson, T.H., and K.H. Domsch (1993) The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biol. Biochem. 25: 393-395.
Arocena, F. M. (2000) Cations in solution from forest soils subjected to forest floor removal and compaction treatments. For. Ecol. Manage. 133: 71-80.
Arunachalam, A., and K. Arunachalam (2000) Influence of gap size and soil properties on microbial biomass in a subtropical humid forest of North-east India. Plant Soil 233: 185-193.
Arunachalam, A., H. N. Pandey, R. S. Tripathi, and K. Maithani (1996) Biomass and production of fine and coarse roots during regrowth of a disturbed subtropical humid forest in north-east India. Vegetation 123: 73-80.
Baba, M., and M. Okazaki (1999) Spatial variability of soil solution chemistry under Hinoki Cypress (Chamaecyparis obtuse) in Tama hills. Soil Sci. Plant Nutr. 45(2): 321-336.
Baeumler, R., and W. Zech (1998) Soil solution chemistry and impact of forest thinning in mountain forests in Bavarian Alps. For. Ecol. Manage. 108: 231-238.
Baldwin, I. T., R. K. Olson, and W. A. Reiners (1983) Protein binding phenolics and the inhibition of nitrification in subalpine balsam fir soils. Soil Biol. Biochem. 15: 419-423.
Bardy, N. C. (1990) The Nature and Porperties of Soils, 10th Edition. Macmillan. New York.
Barrett, J. E., and I. C. Burke (2000) Potential nitrogen immobilization in grassland soil across a soil organic matter gradient. Soil Biol. Biochem. 31: 1021-1030.
Bauhus, J., and P. K. Khanna (1999) The significance of microbial biomass in forest soils. P. 77-110. In N. Rastin and J. Bauhus (eds.), Going underground: Ecological studies in forest soils. Research Signpost, Trivandrum, India.
Beare, M.H., R.W. Parmelee, P.F. Hendrix, and W. Cheng (1992) Microbial and faunal interactions and decomposition in agroecosystem. Ecol. Monogr. 62(4): 569-591.
Behara, N., S. K. Joshi, and D. P. Pati (1990) Root contribution to total soil metabolism in a tropical forest soil from Orissa, India. For. Ecol. Manage. 36: 125-134.
Beier, C., and K. Hansen (1992) Evaluation of porous cup soil-water samplers under controlled field conditions: comparison of ceramic and PTFE cups. Soil Sci. 43: 261-271.
Berg, B., and H. Staaf (1980) Decomposition rate and chemical changes of Scots pine needle litter. II. Influence of chemical composition.In Structure and Function of Northern Coniferous Forest-An Ecosystem Study. Ecol. Bull. (Stockholm) 32: 373-390.
Berg, B., and H. Staff (1981) Leaching, accumulation and release of nitrogen in decomposing forest litter. In Terrestrial nitrogen cycles. Ecol Bull (Stockholm) 33: 78-163.
Berg, B., K. Hannus, T. Popoff, and O. Theander (1982) Changes in organic chemical components of needle litter during decomposition: long-term decomposition in a Scots pine forest I. Can. J. Bot. 60: 1310-1319.
Bernal, S., A. Butturini, E. Nin, F. Sabater, and S. Sabater (2003) Leaf litter dynamics and nitrous oxide emission in a Mediterranean riparian forest: Implications for soil nitrogen dynamics. J. Environ. Qual. 32: 191-197.
Blair, John M. (1988) Nutrien releasing fron decomposing foliar litter of three tree species with special reference to calcium, magnesium, and potassium dynamics. Plant and Soil 110: 49-55.
Blair. J.M., R.W. Parmelle, and M.H. Beare (1990) Decay rates, nitrogen fluxes, and decomposer communities of single- and mixed-species foliar litter. Ecology 71(5): 85-1976.
Blake, G. R., and K. H. Hartge (1986) Bulk density. In Physical and Mineralogical methods-Agronomy monograph No. 9, 363-375. ASA and SSSA, Madison, Wisconsin, USA.
Bloomfield, J., K. A. Vogt, and D. J. Vogt (1993) Decay rate and substrate quality of fine roots and foliage of two tropical tree species in the Luquillo Experimental Forest, Puerto Rico. Plant and Soil 150: 233-245.
Bockheim, J. G., and S. Langley-Turnbaugh (1997) Biogeochemical cycling in coniferous ecosystems on different aged marine terraces in Coastal Oregon. Plant and Soil 26: 292-301.
Bolton, H. Jr., J. L. Smith, and S. O. Link (1993) Soil microbial biomass and activity of a disturbed and undisturbed shrub-steppe ecosystem. Soil Biol. Biochem. 25: 545-552.
Bosatta, E., and H. Staaf (1982) The control of nitrogen turn-over in forest litter. Oikos 39: 143-151.
Bowden, R. D., E. Davidson, K. Savage, C. Arabia, and P. Steudler (2004) Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. For. Ecol. Manage. 196: 43-56.
Bowden, R. D., K. M. Newkirk, and G. Rullo (1988) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol. Biochem. 30: 1591-1597.
Brais, S., C. Camiré, and D. Paré (1995) Impacts of whole-tree harvesting and winter windrwoing on soil pH and base status of clayey sites of northwestern Quebec. Can. J. For. Res. 25: 997-1007.
Brasell, H. M., and D. F. Sinclair (1983) Elements returned to forest floor in two rainforest and three plantation plots in tropical Australia. J. Ecol. 71: 367-378.
Bray, J. R., and E. Gorham (1964) Litter production in forest of the world. Adv. Ecol. Res. 2: 101-187.
Bremner, J. M., and D. R. Keeney (1966) Determination and isotope-ratio analysis of different forms of nitrogen in soils: 3 Exchangeable ‘ammonium, nitrate, and nitrite’ by extraction distillation methods. Soil Sci. Soc. Am. Proc. 30, 577-582.
Brich, H. F. (1958) The effect of soil drying on humus decpmposition and nitrogen availability. Plant Soil 10: 9-31
Brinson, M. M., H. D. Bradshaw, R. N. Holmes and J. B. Elkins (1980) Litterfall, stemflow, and throughfall nutrient fluxes in an alluvial swamp forest. Ecology 61: 827-835.
Brookes. P. C., A. Landman, G. Pruden, and D.S. Jenkinson (1985) Chloroform fumigation and the release of soil N: a rapid direct extraction method to measure microbial biomass N in soil. Soil Biol. Biochem. 17: 837-842.
Brown, S. J., and A. E. Lugo (1982) The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica 14(3): 161-187.
Bubb, K. A., Z. H. Xu, J. A. Simpson, and P. G. Saffigna (1998) Some nutrient dynamics associated with litterfall and litter decomposition in hoop pine plantations of southeast Queensland, Aust. For. Ecol. Manage. 110: 343-352.
Burke, I. C., W. A. Reiners, and D. S. Schimel (1989) Organic matter turnover in a sagebruch steppe landscape. Biogeochemistry 7: 11-31.
Bussotti, F., F. Borghini, C. Celesti, C. Leonzio, A. Cozzi, D. Bettini, and M. Ferretti (2003) Leaf shedding, crown condition and element return in two mixed holm oak forests in Tuscany, central Italy. For. Ecol. Manage. 176: 273-285.
Caldentey, J., M. Ibarra, and J. Hernández (2001) Litter fluxes and decomposition in Nothofagus pumilio stands in the region of Magallanes, Chile. For. Ecol. Manage. 148: 145-157.
Calderón, F. J., L. E. Jackson, K. M. Scow, and D. E. Rolston (2002) Microbial responses to simulated tillage in cultivated and uncultivated soils. Soil Biol. Biochem. 32: 1547-1559.
Carter M. R., and D. A. Rennie (1982) Changes in soil quality under zero tillage farming systems : Distirbution of microbial biomass and mineralizable C and N potentials. Can. J. Soil Sci. 62: 587-597.
Chapman, K., J. B. Whittaker, O. W. Heal (1988) Metabolic and faunal activity in litters of tree mixtures compared with pure stands. Agri. Ecosys. Environ. 24: 33-40.
Christopher, N., M. C. Piccolo, and C. C. Cerri (1997) Net nitrogen mineralization and net nitrification rates in soils following deforestation for pasture across the southwestern Brazilian Amazon Basin landscape. Oecologia 110: 243-252.
Clark, F. W. (1924) The data of geochemistry. U. S. Geol. Survey Bull. 770.
Cole, D. W., and M. Rapp (1981) Elemental cycling in forest ecosystems. In Dynamics Properties of Forest Ecosystems, 341-407. Cambridge University Press. New York, USA.
Coleman D. C., C. P. P Reid, and C.V. Cole (1983) Biological strategies of nutrient cycling on soil systems. Adv. Ecol. Res. 13: 1-55.
Cornforth, I. S. (1970) Leaf fall in tropical rainforest. J. Appl. Ecol. 7 : 603-608.
Cortez, N. R. S. (1996) Compartimentos e ciclos de nutrients em plantacoes de Eucalyptus globules Labill. Ssp. globulus e Pinus pinaster Aiton. Ph. D. Thesis. Instituto Superior de Agronomia, Lisbon, pp. 317.
Cronan, C. S., and D. F. Grigal (1995) Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. J. Environ. Qual. 24: 209-226.
Crowther, J. (1987) Ecological observations in tropical karst terrain, West Malaysia. II. Rainfall interception, litterfall and nutrient cycling. J. Biogeogr. 14: 145-155.
Cuevas, E., and A. E. Lugo (1998) Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. For. Ecol. Manage. 112: 263-279.
Cuevas, E., and E. Medina (1986) Nutrient dynamics within Amazonian forest ecosystems. Oecologia 68: 466-472.
Dalva, M., and T. R. Moore (1991) Sources and sinks of dissolved organic carbon in a forested swamp catchment. Biogeochemistry 15: 1-19.
David, M. B., and G. B. Lawrence (1996) Soil and solution chemistry under red spruce stands across the northeastern United State. Soil Sci. 161: 314-328.
Davidson, E. A., E. Belk, and R. D. Boone (1998) Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperature mixed hardwood forest. Global Change Biol. 4: 217-227.
Davidson, E. A., J. M. Stark, and M. K. Firestone (1990) Microbial production and consumption of nitrate in an annual grassland. Ecology 71: 1968-1975.
De Vries, W., J. J. M. Van Grinsven, N. Van Breemen, E. E. J. M. Letters, and P. C. Jansen (1995) Impacts of acid deposition on concentrations and fluxes of solutes in acid sandy forest soils in The Netherlands. Geoderma 67: 17-43.
Diaz-Ravina, M., M. J. Acea, and T. Carballas (1995) Seasonal changes in microbial biomass and nutrient flush in forest soils. Biol. Fertil. Soils 19: 220-226.
Diaz-Ravina, M., M. T. Acea, and T. Carballas (1993) Microbial biomass and its contribuation to nutrient concentrations in forest soils. Soil Biol. Biochem. 25: 25-31.
Diaz-Ravina, M., T. Carballas, and M. J. Acea (1988) Microbial biomass and metabolic activity in four acid soils. Soil Biol. Biochem. 20: 817-823.
Dinesh, R., M. A. Suryanarayana, S. Ghoshal Chaudhuri, and T. E. Sheeja (2004) Long-term influence of leguminous cover crops on the biochemical properties of a sandy clay loam Fluventic Sulfaquent in a humid tropical region of India. Soil Till. Res. 77: 69-77.
Edwards, J. P. (1977) Studies of mineral cycling of montane rain forest in New Guinea. II. The production and disappearance of litter. Ecology 65: 971-992.
Edwards, N. T. (1975) Effects of temperature and moisture on carbon dioxide evolution in a mixed deciduous forest floor. Soil Sci. Soc. Am. J. 39: 361-365.
Edwards, P. J. (1982) Studies of mineral cycling in a montane rain forest in New Guinea. V. Rates of cycling in throughfall and litter fall. J. Ecol. 70: 807-827.
Eno, C. (1960) Nitrate production in the field by incubating the soil in polyethylene bags. Soil Sci. Soc. Am. Proc. 24: 277-279.
Ewel, J. J. (1976) Litter fall and leaf decomposition in a tropical forest succession in eastern Guatemala. J. Ecol. 64: 293-280.
Facelli, J. M., and S. T. A. Pickett (1991) Plant litter: Its dynamics and effects on plant community structure. Bot. Rev. 57(1): 1-32.
Feller, M. C. (1977) Nutrient movement through western hemlockwestern redcedar ecosystems in southwestern British Columbia. J. Ecol. 58: 1269-1283.
Fierer, N., J. P. Schimel (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol. Biochem. 34: 777-787.
Fioretto, A., S. Papa, G. Sorrentino, and A. Fuggi (2001) Decomposition of Citus incanus leaf in a Mediterranean maquis ecosystem: mass loss, microbial eczyme activities and nutrient changes. Soil Biol. Biochem. .33: 311-321.
Fogel R., and K. Cormack (1977) Effect of habitat and substrate quality on Douglas fir litter decomposition in western Oregon. Can. J. Bot. 55: 1632-1640.
Franzluebbers, A. J., R. L. Haney, C. W. Honeycutt, H. H. Schomberg, and F. M. Hons (2000) Flush of carbon dioxide following rewetting of dried soil relates to active organic pools. Soil Biol. Biochem. 64: 613-623.
Friedel, J. K., D. Gabel, and K. Stahr (2001) Nitrogen pools and turnover in arable soils under different duration of organic farming. II. Source- and –sink function of the soil microbial biomass or competition with growing plants ? J. Plant Nutr. Soil Sci. 164: 421-429.
Friedman, G. M., and J. E. Sanders (1978) Principles of Sedimentology, Wiley.
Gardner, W. H., and K. H. Hartge (1986) Bulk density. In Physical and Mineralogical methods-Agronomy monograph No. 9, 383-411. ASA and SSSA, Madison, Wisconsin, USA.
Garrett, H. E., and G. S. Cox (1973) Carbon dioxide form the floor of and oak-hickory forest. Soil Scienct of America Proceedings. 37: 641-644.
Gee, G.W., and J. W. Bauder (1986) Particle-size analysis. In Methods of Soil Analysis. Part 1, 381-412. Agron. Monogr. 9. Agronomy Society of America and Soil Science Society of America, Madison, WI.
Georgina, G. M., J. M. Maass, P. A. Matson, and P. M. Vitousek (1991) Nitrogen transformations and nitrous oxide flux in a tropical deciduous forest in Mexico. Oecologia 88: 362-366.
Godde, M. M., B. David, M. J. Christ, M. Krupenjoan, and G. F. Vance (1996) Carbon mobilization from the forest floor under red spruce in the Northeastern U.S.A. Soil Biol. Biochem. 28: 1181-1189.
Grigg, A. H., and D. R. Mulligan (1999) Litterfall from two eucalypt woodlands in central Queensland. Aust. J. Ecol. 24: 662-664.
Guo, L. B., and R. E. H. Sims (1999) Litter production and nutrient return in New Zealand eucalypt short-rotation forests: implications for land management. Agric. Ecosyst. Environ. 73: 93-100.
Haase, R. (1999) Litterfall and nutrient return in seasonally flooded and non-flooded forest of the Pantanal, Mato Grosso, Brazil. For. Ecol. Manage. 117: 129-147.
Hairiah, K., H. Sulistyani, D. Suprayogo, Widianto, P. Purnomosidhi, R. H. Widodo, and M. Van Noordwijk (2006) Litter layer residence time in forest and coffee agroforestry systems in Sumberjaya, West Lampung. For. Ecol. Manage. 224: 45-57.
Hanson, P. J., S. D. Wullschleger, S. A. Bohlman, and D. E. Todd (1993) Seasonal and topographic patterns of forest floor CO2 efflux from an upland oak forest. Tree physiology 13: 1-15.
Hantschel, R., M. Kaupenjohann, R. Horn, J. Gradl, and W. Zech (1988) Ecologically important differences between equilibrium and percolation soil extracts, Bavaria. Geoderma 43: 213-227.
Harmon, M. E., and K. Lajtha (1999) Analysis of detritus and organic horizons for mineral and organic constituents. In Standard soil methods for long-term ecological research, 143-165. Oxiford University Press, Oxiford, New York.
Hart, S. C., J. M. Stark, E. A. Davidson, and M. K. Firestone (1994) Nitrogen mineralization, immobilization, and nitrification. In Metohds of soil Analysis, Part 2. Microbiological and biochemiczl properties, 985-1081. SSSA Book Series, No. 5. SSSA, WI.
Hauhs, M. (1989) Lange Bramke: an ecosystems study of a forested catchment. In Acidic Precipitation, 275-305. Springer, New York.
Herbohn, J. L., and R. A. Congdon (1998) Ecosystem dynamics at disturbed and undisturbed sites in North Queensland wet tropical rain forest. III. Nutrient returns to the forest floor through litterfall. J. Trop. Ecol. 14 : 217-229.
Ho, C. S (1975) An introduction to the geology of Taiwan. Taipei, Taiwan: Central Geological Survey, Ministry of Economic Affairs. 192-195.
Hopkins, B. (1966) Vegetation of Olokemeji forest reserves, Nigeria. IV. The litter and soil with special reference to their seasonal changes. J. Ecol. 54: 687-703.
Horng, F. W. (1994) Soil nitrification of different forest types at Lu-Kuei area of southern Taiwan. In F. W. Horng and J. C. Yang (eds.), Sustainable meanagement of temperate and subtropical plantation ecosystem, Taipei.
Horng, Fu-wen, Han-ming Yu, and Fu-ching Ma (1995) Typhoons of 1994 double the annual litterfall of the Fu-Shan mixed hardwood forest ecosystem in northeastern Taiwan. Bulletin of Taiwan Forestry Research Institute. New Series 10: 485-491.
Hungate, B. A., P. Dijkstra, D. W. Johnson, C. R. Hinkle, and B. G. Drake (1999) Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oak. Glob. Chan. Biol. 5: 781-789.
Husson, O., M. T. Phung, and M. E. F. V. Mensvoort (2000) Soil and water indicators for optimal practices when reclaiming acid sulphate soils in the Plain of Reeds, Viet Nam. Agr. Water Manage. 45: 127-143.
Jackson, L. E., J. P. Schimel, and M. K. Firestone (1989) Short-term partitioning of ammonium and nitrate between plants and microbes in an annual grassland. Soil Biol. Biochem. 21: 409-411.
Jamaludheen, V., and B. M. Kumar (1999) Litter of multipurpose trees in Kerala, India : variations in the amount, quality, decay rates and release of nutrients. For. Ecol. Manage. 115: 1-11.
Jenkinson, D. S. (1988) The determination of microbial biomass carbon and nitrogen in soil. In Advances in Nitrogen Cycling in Agri-cultural Ecosystems, 368-386. CAB International, Wallingford.
Jenkinson, D. S., and J. M. Ladd (1981) Microbial biomass in soil: Measurement and turnover. In Soil biochemistry, 415-471. Marcel Dekker, New York.
Jenkinson, D. S., and J. N. Ladd (1981) Microbial biomass in soil : Measurement and turnover. In Soil Biochemistry, 415-417. New York.
Jenny, H., S. P. Gessel, and F. T. Bingham (1949) Comparative study of decomposition rates of organic matter in temperate and tropical regions. Soil Sci. 68: 419-432.
Jia, B. R., G. S. Zhou, F. Y. Wang, and Y. H. Wang (2004) Soil respirations at fenced and grazing Leymus Chinesis steppe, Inner Mongolia. High Technology Letters 10: 384-392.
Joergensen, R. G., T. H. Anderson, and V. Wolters (1995) Carbon and nitrogen relationships in the microbial biomass in soils of beech (Fagus sylavnea L.) forest. Biol. Fertil. Soils 19: 141-147.
Jordan, C. F. (1971) A world pattern in plant energetics. Am. Sci. 59: 425-433.
Jorgensen, J. R., C. G. Wells, and L. J. Metz (1975) The nutrient cycle: key to continuous forest production. J. For. 73: 400-403.
Kaiser, K., and W. Zech (1997) Competitive sorption of dissolved organic matter fractions to soils and related mineral phase. Soil Sci. Soc. Am. J. 61: 64-69.
Kaneko, N., and E. F. Salamanca (1999) Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak-pine stand in Japan. Ecol. Res. 14: 131-138.
Kaur, B., S. R. Gupta, and G. Singh (2000) Soil carbon, microbial activity and nitrogen availability in agroforestry ststems on moderately alkaline soils in northern India. Appl. Soil Ecol. 15: 283-294.
Keeney, D. R. (1982) Nitrogen-availability indices. In Methods of soil analysis, Part 2. Chemical and microbiological properties, 711-734. Agron. Monogr. 9 ASA and SSSA, Madison, WI, USA.
Keeney, D. R., and D.W. Nelson (1982) Nitrogen—Inorganic forms. In Method of soil analysis. Part 2, 643-698. Agron. Monogr. ASA and SSSA, Madison, WI, USA.
Kelting, D. L., J. A. Burger, and G. S. Edwards (1998) Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. Soil Biol. Biochem. 30 : 961-968.
Kim, C., T. L. Sharik, and M.F. Jurgensen (1996) Canopy cover effects on mass loss, and nitrogen and phosphorus dynamics fron decomposing litter in oak and pine stands in northern Lower Michigan. For. Ecol. Mangae. 80: 13-20.
Klemmedson, J. O., C. E. Meier, and R. E. Campbell (1990) Litter fall transfers of dry matter and nutrients in ponderosa pine stands. Can. J. For. Res. 20: 1105-1115.
Knoepp, J. D., D. P. Turner, and D. T. Tingey (1993) Effects of ammonium and nitrate on nutrient uptake and activity of nitrogen assimilating enzymes in western hemlock. Forest Ecol. Manage. 59: 179-191.
Knutson, R. M. (1997) An 18-year study of litterfall and litter decomposition in a northeast Iowa deciduous forest. Am. Midl. Nat. 138: 77-83.
Kunkel-Westphal, I., and P. Kunkel (1979) Litterfall in Guatemalan primary forest with details of leaf shedding by some common species. J. Ecol. 67: 287-302.
Kuo, S. (1996) Phosphorus. In Methods of Soil Analysis, Part 3, 869-919. SSSA Book series No. 5. Agronomy Society of America and Soil Science Society of America, Madison, WI.
Kursar, T. A. (1989) Evaluation of soil respiration and soil CO2 concentration in a lowland moist forest in Panama. Plant Soil 113: 21-29.
Lamade, E., N. Djegui, and P. Leterme (1996) Estimation of carbon allocation to the roots from soil respiration measurements of oil palm. Plant Soil 181: 329-339.
Lamersdorf, N. P., C. Beier, K. Blanck, M. Bredemeier, T. Cummins, E. P. Farrell, K. Kreutzaer, L. Rasmussen, M. Ryan, W. Weis, and Y. J. Xu (1998) Effect of drought experiments using roof installations on acidification/nitrification of soils. For. Ecol. Manage. 101: 95-109
Laverman, A. M., H. R. Zommer, H. W. Van Verseveld, and H. A. Verhoef (2000) Temporal and spatial variation of nitrogen transformation in a coniferous forest soil. Soil Biol. Biochem. 32: 1661-1670.
Lenis, R., S. Mazurier, F. Gourbiere, and A. Josserand (1986) Rapid determination of the nitrification potential of an acid forest soil and assessment of its variability. Soil Biol. Biochem. 18: 239-240.
Litaor, M. I. (1988) Review of soil solution samplers. Water Resour. Res. 24: 727-733.
Liu, W., J. E. D. Fox, and Z. Xu (2002) Biomass and nutrient accumulation in montane evergreen broad-leaved forest (Lithocarpus xylocarpus type) in Ailao Mountains, SW China. For. Ecol. Manage. 158: 223-235.
Lodge, D. J., F. N. Scatena, C. E. Asbury, and M. J. Sanchez (1991) Fine litterfall, and related nutrient inputs resulting from Hurricane Hugo in subtropical wet and lower montane rain forests of Puerto Rico. Biotropica 23: 336-342.
Lodhiyal, N., and L.S. Lodhiyal (2003) Aspects of nutrient cycling and nutrient use pattern of Bhabar Shisham forests in central Himalaya, India. For. Ecol. Manage. 176: 237-252.
Lousier, J. D., and D. Parkinson (1975) Litter decomposition in cool temperature deciduous forest. Can J. Bot. 54: 419-435.
Lowman, M. D. (1988) Litterfall and leaf decay in three Australian rainforest formations. Ecology 776: 451-465.
Lynch, J. M., and L. M. Panting (1980) Variations in the size of the soil biomass. Soil Biol. Biochem. 12 : 547-550.
MacDonald, J. D., N. Bélanger, and W. H. Hendershot (2004) Column leaching using dry soil to estimate solid-solution partitioning observed in zero-tension lysimeters. 2. Trace metals. Soil and Sedim. Cont. 13: 375-390.
MacDonald, N. W., D. L. Randlett, and D. R. Zak (1999) Soil warming and carbon loss from a lake states Spodosol. Soil Sci. Soc. Am. J. 63: 211-218.
Maggs, J., and B. Hewett (1990) Soil and litter respiration in rainforests of contrasting nutrient status and physiognomic structure near Lake Eacham, north-east Queensland. Aus. J. Ecol. 15: 329-336.
Magid, J., and N. Christensen (1993) Soil solution sampled with and without tension in arable and heath land soils. Soil Sci. Soc. Am. J. 57: 1463-1469.
Maithani, K. R. S., Tripathi, A. Arunachalam, and H. N. Pandey (1996) Seasonal dynamics of microbial biomass C, N and P during regrowth of a disturbed subtropical humid forest in north-east India. Appl. Soil Ecol. 4: 31-37.
Marques, R., and J. Ranger (1997) Nutrient dynamics in a chronosequence of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) stands on the Beaujolais Mounts (France). 1. Qualitative approach. For. Ecol. Manage. 91: 255-277.
Martikainen, P. J., and A. Palojarvi (1990) Evaluation of the fumigation extraction method for the determination of microbial C and N in a ragne of forest soils. Soil Biol. Biochem. 22: 797-802.
Mayer, R. (1983) Interaction of forest canopies with atmospheric constituents; Aluminum and heavy metals. In Effects of accumulation of air pollutants in forest ecosystems, 47-56. Reidel, Dordrecht, Netherlands.
McDowell, W. H., and G. E. Likens (1988) Origin, composition , and flux of dissolved organic carbon in the Hubbard Brook Valley. Ecol. Monogr. 58: 177-195.
McGill W.B., K.R. Cannon, J.A. Robertson, and F. D. Cook (1986) Dy-namics of soil microbial biomass and water-soluble organic C in Breton L after 50 years of cropping to two rotations. Can. J. Soil. Sco. 66: 1-19.
McLean, E. O. (1982) Soil pH and lime requirement. In Methods of Soil Analysis, Part 2, 199-224.Agron. Monogr. 9. Agronomy Society of America and Soil Science Society of America, Madison, WI4.
Meentemeyer, V. (1978) Macroclimate and lignin control of litter decomposition rates. Ecology 59: 465-472.
Meentemeyer, V., E.O. Box, and R. Thompson (1982) World patterns and amounts of terrestrial plant litter production. Bioscience 32(2): 125-128.
Melillo, J. M., J. D. Aber, and J. F. Muratore (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. J. Ecol. 63: 621-626.
Moffat, A. J., H. Kvaalen, S. Solberg, and N. Clarke (2002) Temporal trends in throughfall and soil water chemistry at three Norvegian forests, 1986-1997. For. Ecol. Manage. 168: 15-28.
Montagnini, F. (2000) Accumulation in above-ground biomass and soil storage of mineral nutrients in pure and mixed plantations in a humid tropical lowland. For. Ecol. Manage. 134: 257-270.
Muoghalu, J.I., S.O. Akanni, and O.O. Eretan (1993) Litter fall and nutrient dynamics in a Nigerian rain forest seven years after a ground fire. J. Veg. Sci. 4: 323-328.
Mustoe, G.. E. (1983) Cavernous weathering in the Capital Reef Desert, Utah. Earht Surface Process and Landforms, vol. 8, 517-526.
Musvoto, C. B., M. Campbell, and H. Kirchmann (2000) Decomposition and nutrient release from mango and miombo woodland litter in Zimbabwe. Soil Biol. Biochem. 32: 1111-1119.
Nakane, K., T. Kohno, T. Horikoshi, and T. Nakatsubo (1997) Soil carbon cycling at a black spruce (Picea mariana) forest stand in Saskatchewan, Canada. J. Geo. Res. Atmo. 102: 785-793.
Nelson, D. W., and L. E. Sommers (1982) Total carbon, OC, and organic matter. In Methods of Soil Analysis, Part 2, 539-577. Agron. Monogr. 9. Agronomy Society of America and Soil Science Society of America, Madison, WI.
Nelson, R. E. (1982) Carbonate and gypsum. In Methods of Soil Analysis, Part 2, 181-197. Agron. Monogr. 9. Agronomy Society of America and Soil Science Society of America, Madison, WI.
Novozamsky, I., V. J. G. Houba, R. van Eck, and W. van Vark (1983) A novel digestion technique for muti-element plant analysis. Commun. In Soil Sci. Plant Anal. 14(3): 239-248.
Nyberg, L. (1996) Spatial variability of soil water content in covered catcment at Gårdsjön, Sweden. Hydrol. Processes 10 : 89-103.
Nye, P. H. (1981) Change of pH across the rhizosphere induced by roots. Plant and Soil 61: 7-26.
Odum, E. P. (1960) Organic production and turnover in old field succession. Ecology 41: 34-49.
Olsen, S. R., and L. E. Sommers (1982) Phosphorus. In Methods of soil analysis, Part 2, 403-427. American Society of Agronomy, Soil Science Socieyt of America, Madison, Wisconsin, USA.
Olson, J. S. (1963) Energy storage and the balance of producers and decomposers in ecological system. Ecology 44 : 1-15.
Osono, T., and H. Takeda (2001) Organic chemical and nutrient dynamics in decomposing beech leaf litter in relation to fungal ingrowth and succession during 3-year decomposition processes in a cool temperate deciduous forest in Japan. Ecological Research 16: 649-670.
Palma, R. M., J. Prause, A. V. Fontanive, and M. P. Jimenez (1998) Litter fall litter decomposition in a forest of the Parque Chaqueño Argentino. For. Ecol. Manage. 106: 205-210.
Paul, E. A., and F. E. Clark (1989) Soil microbiology and biochemistry. Academic Press. New York.
Paul, E. A., and F. E. Clark (1996) Soil microbiology and biochemistry. Academic Press Inc., San Diego.
Paul, E. A., D. Harris, M. J. Klug, and R. W. Ruess (1999) The determination of microbial biomass. In Standard soil method for long-term ecological research, 291-317 Oxford Univ. Press, New York.
Pedersen, L. B., and J. Bille-Hansen (1999) A comparison of litterfall and element fluxes in even aged Norway spruce, sitka spruce and beech stands in Denmark. For. Ecol. Manage. 114: 55-70.
Pérez, C. A., J. J. Armesto, C. Torrealab, and M. R. Carmona (2003) Litterfall dynamics and nitrogen use efficiency in two evergreen temperate rainforests of southern Chile. Austral Ecol. 28: 591-600.
Perry, D. A. (1994) Forest ecosystems. The Johns Hopkins University Press, Baltimore, Maryland, USA. 300-338, 388-348.
Powlson, D. S., P. C. Brookes, and B. T. Christensen (1987) Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19: 159-164.
Proctor, J., J. M. Anderson, S. C. L. Fogden, and H.W. Vallack (1983) Ecological studies in four contrastion lowland rain forest in Gunung Mulu national park, Sarawak. II. Litterfall, litter standing crop and preliminary observations on herbivory. Ecology 261-283.
Raghubanshi, A. S. (1991) Dynamics of soil biomass C, N and P in a dry tropical forest in India. Bio. Fertil. Soils 12 : 55-59.
Raich, J. W., and W. H. Schlesinger (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44(B) : 81-99
Raison, R. J., M. J. Connell, and P. K. Khanna (1987) Methodology for studying fluxes of soil mineral-N in situ. Soil Biol. Biochem. 19: 521-530.
Ranger, J., R. Marques, and J. H. Jussy (2001) Forest soil dynamics during stand development assessed by lysimeter and centrifuge solution. For. Ecol. Manage. 144:129-145.
Rapp, M., I. S. Regina, M. Rico, and H. A. Gallego (1999) Biomass, nutrient content, litterfall and nutrient return to the soil in Mediterranean oak forests. For. Ecol. Manage. 119: 39-49.
Regina, I. S., and T. Tarazona (2001) Nutrient pools to the soil through organic matter and throughfall under a Scots pine plantation in Sierra de la Demanda, Spain. Eur. J. Soil Biol. 37: 125-133.
Rhoades, J. D. (1982) Cation exchange capacity. In Methods of Soil Analysis, Part 2, 149-157. Agron. Monogr. 9. Agronomy Society of America and Soil Science Society of America, Madison, WI..
Ribeiro, C., M. Madeira, and M. C. Argújo (2002) Decomposition and nutrient release from leaf litter of Eucalyptus globules grown under different water and nutrient regimes. For. Ecol. Manage. 171: 31-41.
Robertson, G. P., D. Wedin, P. M. Groffman, J. M. Blair, E. A. Holland, K. J. Nadelhoffer, and D. Harris (1999) Soil carbon and nitrogen availability: nitrogen mineralization, nitrification and soil respiration potentials, In Standard Soil Methods for Long-Term Ecological Research, 258-271 Oxford University Press, Oxford.
Rogers, H. M. (2002) Litterfall, decomposition and nutrient release in a lowland tropical rain forest, Morobe Province, Papua New Guinea. J. Trop. Ecol. 18: 449-456.
Rogers, R.W., and W. E. Westman (1977) Seasonal nutrient dynamics of litter in a subtropical eucalypt forest, North Stradbroke Island. Aust. J. Bot. 25: 47-58.
Ross, D. J. (1999) Estimation of soil C by a fumigation-extraction method: influence of seasons, soils and calibration with the fumigation-incubation procedure. Soil Biol. Biochem. 22: 295-300.
Rustad, L. E., L. J. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, and J. Gurevitch (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126: 543-562.
Saharjo, B. H., and H. Watanabe (2000) Estimation of litter fall and seed production of Acacia mangium in a forest plantation in South Sumatra, Indonesia. For. Ecol. Manage. 130: 265-268.
Sandhu, J., M. Sinha, and R. S. Ambasht (1990) Nitrogen release from decomposing litter of Leucaena leucocephala in the dry tropics. Soil Biol. Biochem. 22(6): 63-859.
SAS Institute, (1982) SAS User’s Guide, Statistics. SAS Inst., Cary, NC.
Schjonning, P., I. K. Thomsen, and J. P. Moberg (1999) Turnover of organic matter in differently textured soils. I. Physical characteristics of structurally disturbed and intact soils. Geoderma 89: 177-198.
Schnurer, J., M. Clarholm, and T. Rosswall. (1985) Microbial biomass and activity in an agricultural soil with different organic matter content. Soil Biol. Biochem. 17 : 611-618.
Scott, D. A., J. Proctor, and J. Thompson (1992) Ecological studies on a lowland evergreen rain forest on Maraca Island, Roraima, Brazil. II. Litter and nutrient cycling. J. Ecol. 80: 705-717.
Semwal, R. L., R. K. Maikhuri, K. S. Rob, K. K. Sen, and K. G. Saxena (2003) Leaf litter decomposition in decaying leaves of fagus sylvatica and needles of abies alba. Soil Biol. Biochem. 28(1) : 101-106.
Setala, H., and H. Huhta (1990) Evaluation of the soil faunal impact on decomposition in a simulated coniferous forest soil. Biology and Fertility of Soils 10 : 163-169.
Seto, M., and S. Yui (1983) The amounts of dissolved organic carbon in the soil solutions of a forest and farm soil in situ. Jpn. J. Ecol. 33: 305-312.
Shi, W., J. M. Norton, B. E. Miller, and M. G. Pace (1999) Effects of aeration and moisture during windrow composting on the nitrogen fertilizer values of dairy waste composts. Applied Soil Ecology 11: 17-28.
Simth, K., H. L. Gholz, F. de. A. Oliveira (1998) Litterfall and nitrogen-use efficiency of plantations and primary forest in the eastern Brazilian Amazon. For. Ecol. Manage. 109: 209-220.
Singh, A. N., A. S. Raghubanshi, and J. S. Singh (2004) Impact of native tree plantations on mine spoil in a dry tropical environment. For. Ecol. Manage. 187: 49-60.
Singh, J. S., and W. H. Gupta (1997) Plant decomposition and soil respiration in terrestrial ecosystem. Botanical Review 43 : 449-529.
Singh, K. P (1989) Mineral nutrients in tropical dry deciduous forest and savanna ecosystems in India. In Mineral nutrients in tropical forest and savanna ecosystems, 153-168. Blackwell Scientific, Oxford, England.
Singh, R. K., R. K. Dutta, and M. Agrawal (2004) Litter decomposition and nutrient release in relation to atmospheric deposition of S and N in a dry tropical region. Pedobiologia 48: 305-311.
Singh, R. S., A. S. Raghubanshi, and J. S. Singh (1991) Nitrogen-mineralization in dry tropical savanna: Effects of burning and grazing. Soil Biol. Biochem. 23: 269-273
Singh, T. S., A. S. Raghubansh, R. S. Singh, and S. C. Strivastava (1989) Microbial biomass acts as a source of plant nutrient in dry tropical forest and savanna. Nature 338 : 499-500.
Smith, J. L (1994) Cycling of nitrogen through microbial activity. In Soil biology: Effects on soil quality, 91-120 CRC Press Inc., New York.
Smith, W. H., and T. G. Siccama (1981) The Hubbard Brook ecosystem study: Biogeochemistry of lead in a northern hardwood forest. J. Environ. Qual. 10: 323-333.
Solinger, S., K. Kalbitz, and E. Matzner (2001) Controls on the dynamics of dissolved organic carbon and nitrogen in a Central European deciduous forest. Biogeochemistry 55: 327-349.
Songwe, N. C., D. U. U. Okali, and F. E. Fasehun (1995) Litter decomposition and nutrient release in a tropical rainforest, southern Bakundu Forest Reserve, Cameroon. J. Trop. Ecol. 11: 333-350.
Songwe, N. C., F. E. Fasehun, and D. U. U. Okali (1988) Litterfall and productivity in a tropical rain forest, Southern Bakundu Forest Reserve, Cameroon. J. Trop. Ecol. 4: 25-37.
Sparling, G. P. (1997) Soil microbial biomass, activity and nutrient cycling as indicators of soil health. In Biological indicators of soil health, 97-119. CAB International, New York.
Sposito, S. (1989) The chemistry of soil. Oxford University Press. New York.
Srivastava, S. C. (1992) Microbail C, N and P in dry tropical soils: seasonal changes and influence of soil moisture. Soil Biol. Biochem. 24: 711-714.
Srivastava, S. C., and J. S. Singh (1988) Carbon and phosphorus in the soil biomass of some tropical soils of India. Soil Biol. Biochem. 20: 743-747.
Staaf, J., and Berg, B (1982) Accumulation and release of plant nutrients in decomposing Scots pine litter: Long-term decomposition in a Scots forest. II. Can. J. Bot. 60: 1561-1568.
Stevens, P. A., M. Hornung, and S. Hughes (1989) Solute concentrations, and major nutrient cycles in a mature Sitka spruceplatation in Beddgelert Forest North Wales. For. Ecol. Manage. 27: 1-20.
Stienstra, A. W., P. Klein Gunnewiek, and H. J. Laanbroek (1994) Repression of nitrification in soils under a climax grassland vegetation. FEMS Microbiol. Ecology 14: 45-52.
Sulce, S., D. Palma-Lopes, F. Jacouin, P. C. Vong, and G. Guiraud (1996) Study of immobilization and remobilization of nitrogen in cultivated soils by hydrolytic fractionation. Euro. J. Soil Sci. 47: 249-255.
Sumida, A. (1991) Litterfall in a secondary forest with special reference to the relationships between leaf-fall rate, basal area and relative growth rate on a species basis. Ecol. Res. 6: 51-62.
Swank, W. T., and D. A. Jr. Crossley (1988) Forest hydrology and ecology at Coweeta. Ecological Studies 66. Springer, p 489.
Switzer, G. L., and L. E. Nelson (1972) Nutrient accumulation and cycling in loblolly pine (Pinus taeda L.) plantation ecosystem: the first twenty years. Soil Sci. Soc. Am. Pro 36: 143-147.
Takahashi, A., T. Hiyama, H. A. Takahashi, and Y. Fukushima (2004) Analytical estimation of the vertical distribution of CO2 production within soil: application to a Japanese temperate forest. Agric. For. Meteorol 126: 223-235.
Takeda, H., and T. Abe (2001) Templates of food-habitat resources for the organization of soil animals in temperate and tropical forests. Ecological Research 16 : 961-973.
Tanner, E. V. J. (1981) The decomposition of leaf litter in Jamaican montane rainforest. Ecology 263-273.
Tanner, E. V. J., V. Kapos, and W. France (1992) Nitrogen and phosphrous fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73: 78-86.
Tewary, C. K., U. Pandey, and J. S. Singh (1982) Soil and litter respiration rates in different microhabitats of mixed oak-conifer forest and their control by edaphic conditions and substrate quality. Plant Soil 65: 233-238.
Tian, X., H. Takeda, and J. Azuma (2000) Dyamics of organic-chamical components in leaf litters during a 3.5-year decomposition. Eur. J. Soil Biol. 36 : 81-89.
Tietema, A., and W. W. Wessel (1994) Microbial activity and leaching during initial oak leaf litter decomposition. Biol. Fert. Soil 18: 49-54.
Tipping, E., C. A. Backes, and M. A. Hurley (1988) The complexation of protons, aluminium, and calcium by aquatic humic substances: a model incorporating binding site heterogeneity and macroionic effects. Water Research 22: 597-611.
Troeh, F. R., and L. M. Thompson (1993) Soils and soil fertility. 5th ed. Oxford University Press. New York.
Tyler, G. (1996) Soil chemistry and plant distribution in rock habitats of southern Sweden. Nordic Journal of Botany 16:609-635.
Tyler, G., and P. A. Olsson (1993) The calcifuge behaviour of Viscaria vulgaris. J. Veget. Sci. 4:29-36.
Van Noordwijk, M., C. Cerri, P. L. Woomer, K. Nugroho, and M. Bernoux (1997) Soil carbodynamics in the humid tropical forest zone. Geoderma 79: 187-225.
Vance, E. D., P. C. Brookes, and D. S. Jenkinson (1987) An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19: 703-707.
Vanlauwe, B., F. Diels, N. Sanginga, and R. Merckx (1997) Decomposition of four Leucaena and Senna prunings in alley cropping systems under sub-humid tropic conditions: the process and its modifiers. Soil Biol. Biochem. 29: 131-137.
Veldkamp, E., E. Davidson, H. Erickson, M. Keller, and A. Weitz (1999) Soil nitrogen cycling and nitrogen oxide emissions along a pasture chronosequence in the humid tropics of Costa Rica. Soil Biol. Biochem. 31: 387-394.
Villela, D. M., and J. Proctor (2002) Leaf litter decomposition and monodominance in the Peltogyne forest of Maracá Island, Brazil. Biotropica 34: 334-347.
Vitousek P. M. (1982) Nutrient cycling and nutrient use efficiency. Am. Nat. 119: 553-572.
Vitousek, P., D. Turner, W. Parton, and R. Sanford (1994) Litter decomposition on the Mauna Loa environmental matrix, Hawaii: patterns, mechanisms, and models. Ecology 75 : 418-429.
Vitousek, P. M. (1984) Litterfall, nutrient cycling, and nutrient limitation in tropical forest. Ecology 65: 285-298.
Vogt, K. A., C. C. Grier, and D. J. Vogt (1986) Production, turnover, and nutrient dynamics of above- and below-ground detritus of world forests. Adv. Ecol. Res. 15: 303-377.
Vossbrinck, C. R., D. C. Coleman, and T. A. Wolley (1979) Abilotic and biotic factors in litter decomposition in semiarid grassland. Ecology 60 : 265-271.
Wang, W. J., C. J. Smith, and D. Chen (2004) Predicting soil nitrogen mineralization dynamics with a modified double exponential model. Soil Sci. Soc. Am. J. 68: 1256-1265.
Warning, R. H., and W. H. Schlesinger (1985) Forest ecosystems: concepts and management. New York: Academic Press. 181-210.
Whitmore, T. C. (1984) Tropical rain forests of the Far East. Clarendon Press, Oxford, England.
Whitmore, T. C. (1990) Tropical rain forest. Oxford Univ. Press. UK.
Wieder, R. K., and G. E. Lang (1982) A critique of the analytical methods used in examining decomposition data obtained from litter bags. Ecology 63: 1636-1642.
Wiklander, G., G. Norlander, and R. Andersson (1991) Leaching of nitrogen from a forest catchment at Söderåsen in southern Sweden. Water Air Soil Pollution 55: 263-282.
Witkamp, M. (1996) Decomposition of leaf litter in relation to environmental, microflora and microbial respiration. Ecology 47: 194-201.
Witter, E., A. M. Martensson, and F. V. Garcia (1993) Size of the soil microbial biomass a long-term field experiment as affected by different N-fertilizers and organic matters. Soil Biol. Biochem. 25 : 659-669.
Wright, C. J., and D. C. Coleman (1999) The effects of disturbance events upon labile phosphorus fractions and total organic phosphorus in the southern Appalachians. Soil Sci. 164: 391-402.
Wu, J. (1991) The turnover of organic C in soil. U. K: University of Reeding.
Xu, N. X., and E. Hirata (2002) Forest floor mass and litterfall in pinus luchuensis plantations with and without broad-leaved tree. For. Ecol. Manage. 157: 165-173.
Xu, X., E. Hirata, and H. Shibata (2004) Effects of typhoon disturbance on fine litterfall and related nutrient input in a subtropical forest on Okinawa island, Japan. Bas. Appl. Ecol. 5: 271-282.
Zabowski, D., and F. C. Ugolini (1990) Lysimeter and centrifuge soil solution: seasonal differences between methods. Soil Sci. Soc. Am. J. 54: 1130-1135.
Zak, D. R., G. E. Host, and K. S. Pregitzer (1989) Regional variability in nitrogen mineralization, nitrification, and overstory biomass in northern Lower Michigan. Can. J. For. Res. 19: 1521-1526.
Zak, D. R., K. S. Pregitzer, P. S. Curtis, J. A. Teeri, and R. D. L. Randlett (1993) Elevated CO2 and feedback between carbon and nitrogen cycles. Plant and Soil 151: 105-117.
Zibilske, L. M. (1994) Carbon mineralization. In Methods of soil Analysis, Part 2. Microbiological and biochemical, 835-863. properties-SSSA Book Series, No. 5. SSSA, WI. P. 835-863.
Zimmermann, S., S. Braun, M. Conedera, and P. Blaser (2002) Macronutrient inputs by litterfall as opposed to atmospheric deposition into two contrasting chestnut forest stands in southern Switzerland. For. Ecol. Manage. 161: 289-302.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔