(34.239.150.57) 您好!臺灣時間:2021/04/18 21:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張慧華
研究生(外文):hang, Hui-Hua
論文名稱:六種香茅揮發性成分分析研究
論文名稱(外文):Analyses of the volatile compounds emitted from six different species of Cymbopogon.
指導教授:黃卓治黃卓治引用關係
指導教授(外文):Huang, Tzou-Chi
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:92
中文關鍵詞:香茅揮發性成分水蒸氣蒸餾法氣相層析質譜儀
外文關鍵詞:Cymbopogonantimicrobial activitessteam distillationgas chromatography-mass spectrometry
相關次數:
  • 被引用被引用:7
  • 點閱點閱:2095
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:318
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對6品種香茅及其不同部位揮發性成分分析,利用水蒸氣蒸餾萃取法萃取精油,並以GC/MS分鑑定,鑑定出61種化學成分。品種間揮發性成分含量百分比方面,醛類有4品系含量較多(30%~89%);單萜醇類有1品系含量較多(63%);倍半萜烯含量較多則有1品系(53%);同品種其不同部位之成分大致相同。
6種香茅及其不同部位之主要揮發性成分與含量分別為:檸檬香茅葉其主要成分為geranial(40%)、檸檬香茅葉鞘其主要成分為citronellal(23%)、爪哇香茅葉其主要成分為geranial(51%)、爪哇香茅葉鞘其主要成分為geranial(53%)、香茅草葉其主要成分為:citronellal(22%)、香茅草葉鞘其主要成分為citronellal(35%)、蜿蜒香茅葉其主要成分為geranial(53%)、蜿蜒香茅葉鞘其主要成分為geranial(50%)、馬丁香茅葉其主要成分為geraniol(62%)、馬丁香茅莖其主要成分為geraniol(61%)、野香茅葉其主要成分為4-methyl-1-(3',3'-dimethylbicyclo [2.2.1]hept -2-ylidene)pent-2-ene(47%)、野香茅莖其主要成分為4-methyl-1-(3',3'- dimethylbicyclo[2.2.1] hept-2-ylidene)pent-2-ene(30%)、野香茅花其主要成分為 cis-methyl- isoeugenol(42%)。
利用主成分分析及集群分析分析6品種台灣香茅揮發性成分間的相關性,發現薄荷葉中的化合物大都以混合形式存在,結果顯示6品種香茅可區分為四個類型: 1. geranial+ neral類型:檸檬香茅、爪哇香茅、蜿蜒香茅。2. citronellal +geraniol類型:香茅草。3. geraniol類型:馬丁香茅。4. 4-methyl-1-(3',3'-dimethylbicyclo[2.2.1]hept-2-ylidene)pent-2-ene + cis-methyl-isoeugenol類型:野香茅。
在本研究的抗菌試驗方面,取香茅草精油以洋菜擴散法(agar diffusion method)分別就六株細菌,三株酵母菌及四株黴菌進行測試,以為求得最小抑菌濃度(minimum inhibitory concentration,MIC)。結果發現,無論是病原菌、酵母菌還是真菌,香茅草精油都具有良好的抑菌效果,其香茅草精油的抑菌濃度範圍在1.25 mM-4.0 mM,可以達到全面抑菌效果。
This study aimed at analyzing volatile compound extracts from 6 varieties of Cymbopogon in Taiwan by using steam distillation analysis coupled with gas chromatography-mass spectrometry (GC/MS). More than 61 volatile compounds were identified. Based on the percentage of the volatile compounds, 4 variefies had higher amounts of aldehydes (30-89%), 1 had higher amounts of monoterpenol (63%), and 1 had higher amounts of sesquiterpene (53%). The compounds found in different parts of the same variefy were mostly identical.
The percentage of the major volatile compounds extracted from different parts of the 6 variefies of Cymbopogon was as follows: The percentage of the major volatile compounds of C. citrates leaf and sheath was geranial (40%). and citronellal (23%), respectively. The percentage of the major volatile compounds of C. winterianus leaf and sheath was geranial at 51% and 53%, respectively. The percentage of the major volatile compounds of C. nardus leaf and sheath was citronellal at 22% and 35%, respectively . The percentage of the major volatile compounds of C. flexuosus (Nees es steud.) W leaf and sheat was geranial at 53% and 50%, respectively. The percentage of the major volatile compounds of C. martinii leaf and stem was geraniol at 62% and 61%, respectively .The percentage of the major volatile compounds of C. tortilis leaf and stem was 4-methyl-1-(3',3'-dimethylbicyclo[2.2.1]hept -2-ylidene)pent-2-ene at 47% and 30%, respectively. The percentage of the major volatile compounds of C. tortilis flower was cis-methyl-isoeugenol (42%).
The relationship of the volatile compounds of the 6 varieties of Cymbopogon was characterized by using the principal component analysis (PCA) and cluster analysis (CA). Results of the analysis showed that the volatile compounds found in Cymbopogon mostly existed in mixture. The results also showed that 6 varieties of Cymbopogon analyzed could be classified into 4 groups: 1) a mixture of geranial and neral type, which includes C. citrates, C. winterianus and C. flexuosus; 2) a mixture of citronellal and geraniol type, which includes C. nardus; 3) geraniol types , which includes C. martini ; and a mixture of 4-methyl-1-(3',3'- dimethylbicyclo[2.2.1]hept-2-ylidene)pent-2-ene and cis-methyl-isoeugenol type, which includes C. tortilis.
The autimicrobial activites measured by minimum inhibitory concentrations (MIC) of the volatile compounds extracted from citronellal oil against 6 bacteria, 3 yeasts and 4 fungi by using agar diffusion method were determined. Results of the analysis of the autimicrobial activites showed that citronellal oil could effectively inhibit the growth of the microbes tested. The results further showed that the microbial growth was completely inhibited at a concentration around 1.25 mM-4.0 mM.
目 錄
頁 次
中文摘要…………………………………………………………..Ⅰ
英文摘要……………………………………………………………….. Ⅲ
誌謝………….…………………………………………………………..Ⅴ
目錄………….…………………………………………………………..Ⅵ
圖表目錄…………………………………………………………………Ⅶ
1.前言…………………………………………………………………...1
2.文獻探討…………………………………………………………………...3
2.1香茅簡介………………………….……………………………….…..3
2.2台灣近年來進出口量現況………………………………..……….5
2.3香茅的應用…………………………………………………….…..5
2.4影響精油組成成分的因子………………………………….…..6
2.5精油萃取之萃取方法…………………………………….…..7
2.6植物精油主要成分及運用……………….…..……..………….10
2.7抗菌活性試驗方法…………………….…..……..………….13
2.8主成分分析與集群分析法…………………………..…… 16
3.材料與方法……..………..………..………..………..…………………....18
3.1實驗材料..…………..….…..………...………..…………………18
3.2實驗方法..………. ….….…..………...………..…………………18
3.3統計分析..…………..….…..………...………..…………………24
4.結果與討論..…………………….…..….………..…………………25
4.1香茅精油成分討論..………..…..………..…………………25
4.2香茅精油抗菌活性之探討………………..…..…………………76
5.結論..………..…..………..…….…..….…...…...…..………81
參考文獻..………..…..………..………………….…..…………………83
附錄..………..….. …………..………………….…..…….…………………91
作者簡介..………..…..………..………….…...…...…...…..………92


圖 表 目 錄
圖 1、檸檬香茅葉揮發性成分氣相層析質譜儀TIC圖……..……........41
圖 2、檸檬香茅葉鞘揮發性成分氣相層析質譜儀TIC圖..……. ..….…42
圖 3、爪哇香茅葉揮發性成分氣相層析質譜儀TIC圖..…...………...…43
圖 4、爪哇香茅葉鞘揮發性成分氣相層析質譜儀TIC圖…..…………44
圖 5、香茅草葉揮發性成分氣相層析質譜儀TIC圖……..……………45
圖 6、香茅草葉鞘揮發性成分氣相層析質譜儀TIC圖…..……….……46
圖 7、蜿蜒香茅葉揮發性成分氣相層析質譜儀TIC圖……...….…...…..47
圖 8、蜿蜒香茅葉鞘揮發性成分氣相層析質譜儀TIC圖........…..... ...…48
圖 9、馬丁香茅葉揮發性成分氣相層析質譜儀TIC圖……..…..…...….49
圖10、馬丁香茅莖揮發性成分氣相層析質譜儀TIC圖…..…..….…...….50
圖11、野香茅葉揮發性成分氣相層析質譜儀TIC圖…..…..…. ...…...….51
圖12、野香茅莖揮發性成分氣相層析質譜儀TIC圖…..…..…........…..…52
圖 13、野香茅花揮發性成分氣相層析質譜儀TIC圖..…. .... ......... ...…….53
圖14、香茅揮發性成分GPP系列的生物合成路徑……………. ...… …...61
圖15、香茅葉主要揮發性成份在第一及第二主成分軸上之分布…...….65
圖16、香茅葉主要揮發性成份在第一及第三主成分軸上之分布...…….66
圖17、香茅葉6種品種在第一及第二主成分軸上之分布…………...…..68
圖18、台灣香茅6種品種葉之集群分析圖…………………………………69
圖19、香茅葉鞘主要揮發性成份在第一及第二主成分軸上之分布……...71
圖20、香茅葉鞘4種品種在第一及第二主成分軸上之分布…….... ……..73
圖21、台灣香茅4種品種葉鞘之集群分析圖………..…..…………….….74
表 1、試驗菌株及其來源………………………………………………….21
表 2、香茅品種及其氣味描述…………………………………………….26
表 3、香茅揮發性成份組成……………………………………………….29
表 4、香茅GC-MS鑑定的揮發性成份…………………………………….31
表 5、台灣6種不同品種香茅及其不同部位揮發性成份組成的GC-MS波鋒面積百分比…………………………………………………….33
表 6、香茅揮發性成份與香味描述……………………………………….38
表 7、香茅主要揮發性成份……………………………………………….40
表 8、台灣6種不同品種香茅葉揮發性成份的GC-MS波鋒面積百分比之比較……………………………………………………………….55
表 9、台灣4不同品種香茅葉鞘揮發性成份的GC-MS波鋒面積百分比之比較…………………………………………………………….58
表10、香茅葉各主成分之特徵值…...... ...…………………………………64
表 11、香茅葉第一、第二及第三主成分之特徵向量組成...... ….. …....…67
表12、香茅葉鞘各主成分之特徵值……………………………………….70
表 13、香茅葉鞘第一、第二及第三主成分之特徵向量組成......... …...…72
表14、香茅草精油對試驗細菌菌株之最小抑制濃度…………………….78
表15、香茅草精油對試驗酵母菌株之最小抑制濃度…………………….79
表16、香茅草精油對試驗黴菌菌株之最小抑制濃度…………………….80
李秀、賴滋漢(1992)食品分析與檢驗。精華出版社。153-157頁。
卓芷聿(2002)精油全書-芳香療法使用小百科。商周出版,104-105頁。
卓芷聿(2003)芳香療法全書。商周出版。78-81頁。
秦立德、陳良宇、張隆仁、邱建中、陳榮五(2001)香蜂草蒸餾精油組成成分鑑定與含量分析初步報告。台中區農業改良場研究彙報72:29-34。
陳永春(2004)台東香草植物。臺東區農業改良場七十五週年特刊2:24-26頁。
陳永春(2001)國內香草(氣)植物介紹。臺東區農業專訊36:17頁。
陳品方(2000)台灣杉與土肉桂精油及其成分之生物活性。國立台灣大學大學林學研究所。碩士論文。
張上鎮、陳品方(2000)精油之抗菌與抗真菌活性。林產工業19(2):275-284。
張元聰、王仕賢、王裕權(2003)臺灣香草植物品種圖鑑。台南區農業改良場技術專刊 124:21-22。
張元聰、王仕賢、王裕權(2002)西洋香草介紹(二)禾本科香草。農業世界 222:90-94。
張隆仁(2003)禾本科香藥草植物-檸檬香茅。台中區農情月刊第48期。
張定霖、洪進雄、吳昭祥(2003)香藥草植物圖鑑。行政院農委會種苗改良繁殖場。9-55頁。
張瑋麟(2003)台灣土肉桂中肉桂醛與乙酸肉桂酯之分析方法與萃取程序開發探討。大葉大學食品工程學系碩士班。碩士論文。
許道平(1998)分析樣品前處理技術-微波萃取法。化學56(4):285-294頁。
曾俊明(2003)芳香療法理論與實務。華立圖書出版。320-325頁。
黃樹立、趙軒(2003)薰香醫學人體自然療法。磨坊文化出版。102頁。
黃寶慧、李茂榮(1996) 固相微量萃取法。科儀新知 18(2): 58-67。
楊郁如(1999)芳香精油對皮膚的效用。安寧療護雜誌第十三期。
溫佑君、Braunschweig Ruth von(2003)精油圖鑑。商周出版。114頁。
劉希平(1999)二氧化碳超流體萃取技術及其應用。科儀新知 20(4): 52-59。
劉璞(2003)精油生活家:30種醉迷精油的方法。東觀國際文化出版,17-18頁。
蔡東湖、馬克麗、陳介甫(1997)芳香療法。J. Chin. Med. 8(1):23-32。
鍾昌宏、譚詩詠(2003)精油芳療事典。三采文化出版。195-197。
謝瑞忠(1997)二氧化碳超臨界流體方法抽取錫蘭肉桂葉香精研究。臺灣林業科學12(1):71-9。
謝瑞忠(1989)不同抽取方法對玉蘭花精油成分差異之研究。林業試驗所研究報告季刊4(4):177-195。
Baranauskiene, R., R. P. Venskutonis, and J. C. R. Demyttenaere(2003) Sensory and instrumental evaluation of catnip (Nepeta cataria L.) aroma. J. Agric. Food Chem. 51(13):3840-8.
Bassole I. H. N., A. S. Ouattara, R. Nebie, C. A. T. Ouattara, Z. I. Kabore, S. A. Traore (2003) Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multiflora from Burkina Faso. Phytochem. 62:209–12.
Bohlmann J. R., G. M. Gauen, and R. Croteau (1998) Plant terpenoid synthases: Molecular biology and phylogenetic analysis. Proc. Natl. Acad. Sci. USA Vol. 95: 4126–4133.
Bliznakov E. G. and D. J. Wilkins(1998) Biochemical and Clinical Consequences of Inhibiting Coenzyme Q10 Biosynthesis by Lipid-Lowering HMG-CoA Reductase Inhibitors (Statins): A Critical Overview . International Symposium On Drugs Affecting Lipid Metabolism.13
Brenna, O. V. and E. Pagliarini(2001) Multivariate analysis of antioxidant power and polyphenolic composition in red wines. J. Agric. Food Chem. 49:4841-4.
Burt S. A., and R. D. Reinders (2003) Antibacterial activity of selected plant essential oils against Escherichia coli O157:H7. Letters in Applied Microbiology 36:162–7.
Caredda A., B. Marongiu, S. Porcedda, and C. Soro (2002) Supercritical carbon dioxide extraction and characterization of Laurus nobilis essential oil. J. Agric. Food Chem. 50:1492–6.
Chen F., D. K. Ro, J. Petri, J. Gershenzon, J. Bohlmann, E. Pichersky, and D. Tholl. (2004) Characterization of a Root-Specific Arabidopsis Terpene Synthase Responsible for the Formation of the Volatile Monoterpene 1,8-Cineole. Plant Physio., Vol. 135:1956–1966.
Choi, H. S. (2003) Character impact odorants of Citrus hallabong [(C. unshiu Marcov × C. sinensis Osbeck) × C. reticulata Blanco] cold-pressed peel oil. J. Agric Food Chem. 51:2687-92.
Cimanga K, Kambu K, Tona L, Apers S, De Bruyne T, Hermans N, Totte J, Pieters L, Vlietinck AJ. (2002) Correlation between chemical composition and antibacterial activity of essential oils of some aromatic medicinal plants growing in the Democratic Republic of Congo. J. of Ethnopharmaco. 79:213–20.
Cosentino S., C. I. G. Tuberoso, B. Pisano, M. Satta, V. Mascia, E. Arzedi, and F. Palmas (1999) In vitro antimicrobial activity and chemical composition of Sardinian Thymus essential oils. Letters in Appl.Microbiol. 29: 130–5.
Delaquis P. J., K. Stanich, B. Girard, and G. Mazza (2002) Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. Intern. J. . Food Microbiology 74:101–9.
Echeverrigaray S., F. Fracaro , A. C. A. Santosa, N. Paroul, R. Wasum, and L. A. Serafini.(2003) Essential oil composition of south Brazilian populations of Cunila galioides and its relation with the geographic distribution. Biochemical Systematics and Ecology 31 : 467–475.
Elgayyar M., F. A. Draughon, D.A. Golden, and J.R. Mount (2001) Antimicrobial activity of essential oils from plants against selected pathogenic and saprophytic microorganisms. Journal of Food Protection 64:1019–24.
Faleiro M. L., M.G. Miguel, F. Ladeiro, F. Venancio, R. Tavares, J. C. Brito, A.C. Figueiredo, J. G. Barroso, and L. G. Pedro (2002) Antimicrobial activity of essential oils isolated from Portuguese endemic species of Thymus. Letters in Applied Microbiology 36:35– 40.
Farag R. S., Z. Y. Daw, F. M. Hewedi, and G. S .A. El-Baroty (1989) Antimicrobial activity of some Egyptian spice essential oils. J. Food Protection 52:665–7.
Forman B. M., B. Ruan, J. Chen, G. J. Schroepfer, and R.M. Evans.(1997) The orphan nuclear receptor LXRa is positively and negatively regulated by distinct products of mevalonate metabolism. Proc. Natl. Acad. Sci. USA Vol. 94:10588–10593
Hammer K. A., C. F. Carson, and T. V. Riley (1999) Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 86: 985–90.
Jones R. N., A. L. Barry, T. L. Gavan, and J. A. Washington (1985) Susceptibility tests: microdilution and macrodilution broth procedures. In Manual of Clinical Microbiology. 4th ed. Edwin HL, Balows A, Hausler WJ, Shadomy HJ. American Society for Microbiology. Washington DC. p 972-7.
Jordan M. J., K. Tandon, P. E. Shaw, and K. L. Goodner (2001) Aromatic profile of aqueous banana essence and banana fruit by gas chromatography-mass spectrometry (GC-MS) and gas chromatography
-olfactometry (GC-O). J. Agric. Food Chem. 49(10):4813-7.
Kawakami M., R. M. Sachs, and T. Shibamoto (1990) Volatile constituents of essedtial oils obtained from newly developed tea tree (Melaleuca alternifolia) clones. J. Agric. Food Chem. 38: 1657-61.
Lambert R. J. W., P. N. Skandamis, P. Coote, and G. J. E. Nychas (2001) A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J. Appl. Microbiol. 91:453–62.
Lewinsohn E., N. Dudai, Y. Tadmor, I. Katzir, U. Ravid, E. Putievsky and D. M. Joel.(1998) Histochemical Localization of Citral Accumulation in Lemongrass Leaves (Cymbopogon citratus (DC.) Stapf., Poaceae) Annals of Botany 81: 35-39.
Ming, L. C., R. O. Figueiredo,S. R. Machado, and R. M. C. Andrade (1996) Yield of essential oil of citral content in different parts of lemongrass leaves ( Cymbopogom citrates (D.C.) stapf.)Poaceae. Acta Hort 426:555-559.
Moleyar V. and P. Narasimham (1992) Antibacterial activity of essential oil components. International J. Food Microbiol. 16:337–42.
Nakamura Y. (2003) Biochemical and Biophysical Research Communications. 302:593-600.
Negi P. S., G. K. Jayaprakasha, L. Mohan, and K. K. Sakariah (1999) Antibacterial activity of turmeric oil: a byproduct from curcumin. J. Agric.d Food Chem. 47:4297– 300.
Nigam M. C., S. P. S. Duhun and A. A. Naqvi (1998) Terpenoid composition of Melissa officinalis. Pafai J. 10, 28-29.
Onawunmi G. O. (1989) Evaluation of the antimicrobial activity of citral. Letters in Appl. Microbiol. 9:105–8.
Packiyasothy E. V. and S. Kyle (2002) Antimicrobial properties of some herb essential oils. Food Australia: Official J. of Cafta and Aifst 54:384–7.
Parliament T. H. (1986) Sample preparation techniques for gas-liquid chromatographic analysis of biologically derived aromas. Biogeneration of aromas. 34-52.
Rajeswara R., P. N. Kaul,G. R. Mallavarapu, and S. Ramesh (1996) Effect of seasonal climatic changes on biomass yield and terpenoid composition of rose-seented geranium ( Pelargonium specues) Biochem. Syst. Ecol. 24:627-635.
Rajeswara RBR, Kaul PN, Syamasundar KV, Ramesh S. (2005) Chemical profiles of primary and secondary essential oils of palmarosa (Cymbopogon martinii (Roxb.) Wats var. motia Burk.). Industrial Crops and Products 21: 121–27.
Rega B., N. Fournier, and E. Guichard.(2003) Solid phase microextraction (SPME) of orange juice flavor: odor representativeness by direct gas chromatography olfactometry (D-GC-O). J. Agric. Food Chem. 51(24):7092-9.
Ribeiro M. A., M. G. Bernardo-Gil and M. M. Esquivel (2001) Melissa officinalis L.:study of antioxidant activity in supercritical residues. J. of Supercritical Fluids 21:51-61.
Santos-Gomes P. C., and M. Fernandes-Ferreira (2001) Organ-and season-dependent variation in the essential oil composition of Salvia officinalis L. cultivated at two different sites. J. Agric. Food Chem. 49:2908-2916.
Sawamura M., U. S. Son, H. S. Choi, M. S. L. Kim, N. T. L. Phi, M. Fears and C. Kumagai. (2004) Compositional changes in commercial lemonessential oil for aromatherapy. The International J. Aromatherapy. 14: 27– 36.
Schaneberg, B. T., and I. A. Khan. (2002) Composition of extraction menthods compounds in the essential oil of lemon grass by GC. J. Agric. Food Chem.50:1345-1349.
Kumar S., S. Dwivedi, A. K. Kukreja, J. R. Sharma and G..D. Bagchi (2000) Cymbopogon : The Aromatic Grass Monograph. Lucknow, Central Institute of Medicinal & Aromatic Plants.95-110.
Singh N., R. K. Singh, A. K. Bhunia and R. L. Stroshine (2002) Efficacy of chlorine dioxide, ozone and thyme essential oil or a sequential washing in killing Escherichia coli O157:H7 on lettuce and baby carrots. Lebensmittelwissenchaften und Technologien 35:720– 9.
Spivey A. C.(2005) Biosynthesis & Biomimetic Total Synthesis -Biosynthesis & Biomimetic Synthesis of Isoprenoids: Terpenes (Including Steroids & Carotenoids) Imperial College Lodon.95-110.
Stecchini M. L., I. Sarais and P. Giavedoni (1993) Effect of essential oils on Aeromonas hydrophila in a culture medium and in cooked pork. J. Food Protection 56:406–9.
Taveira F. S. N., W. N. Lima, E. H. A. Andrade, and J. G. S. Maia. (2003) Seasonal eassential oil variation of Aniba canelilla. Biochem. Syst. Ecol. 31:69-75.
Tillman J. A., S. J. Seybold, R. A. Jurenka, G. J. Blomquist.(1999) Insectpheromones—an overview of biosynthesis and endocrine regulation. InsectBiochemistry and Molecular Biology 29: 481–514.
Wilkinson J. M., M. Hipwell, T. Ryan and H. M. A. Cavanagh (2003) Bioactivity of Backhousia citriodora: antibacterial and antifungal activity. J. Agric. Food Chem. 51:76–81.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔