(100.25.42.117) 您好!臺灣時間:2021/04/21 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:馬芮伶
研究生(外文):Marilyn APA
論文名稱:薰衣草根腐病之發生與防治
論文名稱(外文):Etiology and Control of Phytophthora Root Rot of Lavender (Lavandula spp.)
指導教授:梁文進梁文進引用關係
指導教授(外文):Wen-Jinn Liang
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:熱帶農業暨國際合作研究所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:100
中文關鍵詞:薰衣草根腐病殺真菌劑綜合管理
外文關鍵詞:Root rot of lavenderPhytophthora nicotianaeBacillus sp.fungicidesintegrated management
相關次數:
  • 被引用被引用:1
  • 點閱點閱:345
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:58
  • 收藏至我的研究室書目清單書目收藏:0
在熱帶亞熱帶地區,常由Phytophthora nicotianae (van Breda de Han) Tucker,為害薰衣草和其他香草作物的根部,造成根腐病。目前沒有適當的病害防治方法,其防治主要為加強環境衛生和改善土壤排水,而使用化學農藥將有汙染環境和為害人體健康及病原菌的產生抗藥性的重要問題。本研究在探討不同環境情況下病原菌的生長和展、營養需求及在室內拮抗細菌和殺真菌劑對其之抑制效果,在溫室試驗,拮抗微生物、殺真菌劑、抗病品種、土壤消毒、土壤混拌S-H土壤添加物等綜合管理策略對薰衣草根腐病具防治效果,試驗結果顯示P. nicotianae菌絲生長和胞囊產生的最適溫度分別為28℃和24℃。菌絲生長喜好日夜光照交替條件,天然培養基如V-8培養基,及pH 8-9的鹼性環境。而孢子囊可以在中性pH條件,在光照下和低碳氮素源的培養基大量產生。Bacillus sp. LB5菌種在馬鈴薯蔗糖液體培養液 (PS broth) 培養10天後,其培養懸浮液幾可100%有效抑制游走孢子發芽,亦可抑制菌絲之生長。當LB5 和 P. nicotianae進行對峙培養時,其抑制圈達13-14 mm。在溫室試驗,當Bacillus sp.混拌於土壤中,不直接施用在葉面上可以降低病害之發生。殺真菌劑35 % etridiazole及25 % etridiazole具很好的抑制根腐病菌菌絲生長效果,而80 % mancozeb則具抑制游走胞子發芽的效果較其他殺真菌劑佳。在薰衣草接種游走孢子24小時後,施用35 %滅達樂仍可降低根腐病的發生率。預先施用亞磷酸可以減少病害發生率。土壤日光曝曬消毒和S-H土壤添加物在溫室試驗中使根腐病的罹病率由100 %分別降至12.5 %和0%。篩選根腐病抗病品種,發現有三個品系具有高抗性和一個品系具有中等抗病性。結果顯示栽培介質如經日光曝曬消毒、土壤添加物、抗病品種配合殺真菌劑使用在根腐病病害管理與減少環境污染上可以扮演重要角色這也提供在栽培薰衣草上降低殺真菌劑及抗藥菌系產生的殘留替代方法。
Root rot disease caused by Phytophthora nicotianae (van Breda de Han) Tucker is a devastating root disease of lavender and other aromatic herbs in the tropical and sub-tropical areas. Presently, control requires sanitation and improved soil drainage which do not provide adequate disease control. The use of chemical fungicides has been seriously questioned for environmental and human health hazards as well as the development of fungicide resistance in the pathogen.
Studies were conducted to identify the growth and development of the mycelium and sporangium under different environmental conditions, their nutritional requirements and the effectiveness of antagonistic bacterium and fungicides in the laboratory. Greenhouse studies were also conducted to elucidate the integration of biological control agent, fungicides, resistant cultivars, soil solarization and soil treatment with S-H amendment to manage root rot disease of lavender. Laboratory results showed that the optimum temperature for mycelium growth and sporangia production were 28oC and 24oC respectively. The mycelium prefers alternate light, natural media like V-8 agar and grows better at alkaline pH of 8-9, while sporangia formation is abundant at pH 7, prefers light and less nutrient medium like water agar. Ten-day cultivated liquid of Bacillus sp. LB5 effectively inhibited the spore germination in vitro at a rate close to 100% and inhibited greatly the mycelium growth of P. nicotianae. On dual culture of Bacillus sp. and P. nicotianae plates the inhibition zone ranged from 13-14 mm. Bacillus sp. could reduce the disease incidence in the greenhouse when incorporated with soil but not as direct foliar application. Based on the study of the mycelial growth and inhibition of zoospore germination, the effectiveness of fungicides on root rot pathogen showed that 25% and 35% etridiazole proved better inhibition of mycelium growth followed by 35% metalaxyl. Zoospore germination inhibition was good with 80% Mancozeb followed by 35% metalaxyl. No sporangium formation was observed at 1000 and 100 ppm of phosphorous acid (H3PO3) with a much reduced mycelium growth. For foliar control, L. heterophylla showed no disease incidence with metalaxyl and H3PO3 at all application timings while L. angustifolia did better with 35% metalaxyl as post-application. Solarization and S-H amendment were very effective to control root rot in greenhouse test, the disease incidence of L. heterophylla decreased from 100% to 12.5% and 10% respectively. When cultivars were screened for resistance to root rot, three lines were highly resistant and one line was resistant. The results showed that use of cultural practices like soil solarization, soil amendment and resistant cultivars with scheduled fungicides spray programs would play an important role in the management of root rot diseases with less environmental hazards. They would also offer good opportunities to reduce selection pressure for fungicides resistance and minimize chemical residues in the lavender.
Table of Contents
Chinese abstract……………………………………………………………...I
Abstract…………………………………………………………………….III
Acknowledgements…………………………………………………………V
Table of Contents………………………………………………………….VII
List of Tables………………………………………………………………..X
List of Illustrations………………………………………………………...XII
I INTRODUCTION……………………………………………………1
П LITERATURE REVIEW…………………………………………….4
1.0 Background of host lavender…………………………………..4
1.1 Origin of lavender…………………………………….....4
1.2 Systematic description…………………………………..4
1.3 Distribution and importance…………………………….5
2.0 The Genus Phytophthora………………………………………6
3.0 The Species Phytophthora nicotianae…………………………8
3.1 Taxonomy……………………………………………….8
3.2 Host range…………………………………………….....8
3.3 Biology and ecology………………………………….....9
3.3.1 Life cycle................................................................9
3.3.2 Transmission and dispersal………………………9
3.4 Morphology……………………………………………11
4.0 Pathogenicity of Phytophthora nicotianae…………………...11
5.0 Factors affecting the mycelial growth and sporangial
formation of Phytophthora nicotianae……………………….12
5.1 Temperature……………………………………………12
5.2 Light…………………………………………………...13
5.3 Nutrition……………………………………………….14
5.4 pH……………………………………………………...16
6.0 Use of bacterial as antagonist in disease control……………..17
7.0 Use of fungicides in root rot disease management…………...18
8.0 Fungicide resistance…………………………………………..20
9.0 Use of Phosphorous acid (H3PO3) root rot management……..21
10.0 Breeding for root rot resistance……………….……………...22
11.0 Soil solarization in disease management…..…………………23
12.0 Soil amendment……………………………………………....24
Ш MATERIALS and METHOD……………………………………….26
1.0 Isolation and identification of the pathogen……………….....26
1.1 The pathogen…………………………………………..26
1.2 Pathogenicity test of P. nicotianae…………………….27
1.3 Testing the mating types of P. nicotianae from
lavender ………………………………....................................27
2.0 Factors affecting the mycelial growth and sporangial
production of Phytophthora nicotianae………………………28
2.1 The effects of temperature on mycelium growth and
sporangial formation of P. nicotianae......................................28
2.2 The effects of different media and illuminative
conditions on mycelial growth and sporangial formation of
P. nicotianae…………..…………...........................................29
2.3 The effects of pH on mycelial growth and sporangial
formation of P. nicotianae …………………………………...30
3.0 The antagonistic effect of Bacillus sp. (LB5) on
Phytophthora nicotianae in vitro……………………………..31
3.1 Preparation of antagonistic bacterial suspension...…….31
3.2 Antagonism effect of LB5 on mycelium growth and
zoospore germination of P. nicotianae…….……....................33
4.0 Evaluation of fungicides for the management of
Phytophthora nicotianae in vitro……………………………..32
4.1 Effect of fungicides on mycelium growth and zoospore
germination of P. nicotianae…………………………………32
4.2 Effect of phosphorous acid (H3PO3) on sporangia
formation of P. nicotianae…………………………………....33
5.0 Greenhouse test……………………………….........................34
5.1 Screening lavender cultivars for disease resistance to
Phytophthora root rot disease………………………………...34
5.2 The effect of different application timings of
fungicides and Bacillus sp. (LB5) for disease management
of lavender root rot …………………………………………..35
5.3 Evaluation of soil solarization, S-H amendment and
Bacillus sp. (LB5) for disease management of lavender root
rot……………………………………………………………..36
IV RESULTS and DISCUSSION………………………………………38
V CONCLUSION..…………………………………………………….75
References………………………………………………………………….77
Acronyms…………………………………………………………………..97
Bio-Sketch of Author………………………………………………………99
List of Tables
Tables…………………………………………………………………...Page
Table 1 Three isolates of Phytophthora nicotianae isolated from
lavender (Lavandula heterophylla) in summer 2005…………41
Table 2 Mating types of Phytophthora nicotianae isolates from
lavender………………………………………..…...................42
Table 3 Pathogencity of Phytophthora nicotianae to different parts
of Lavandula heterophylla……………………………………46
Table 4 The effect of different inoculum potential of Phytophthora
nicotianae on disease development inoculated on wounded
and unwounded leaves of Lavandula heterophylla 3 days
after inoculation........................................................................47
Table 5 The effect of different temperatures on mycelium growth
and sporangium formation of Phytophthora nicotianae……...49
Table 6 The effect of different media and lighting conditions on
mycelium growth and sporangium formation of
Phytophthora nicotianae cultivated on V-8, PDA, MEYEA
and water agars……………………………………………….51
Table 7 The effect of different pH on mycelium growth and
sporangium formation of Phytophthora nicotianae after 4
days of incubation…………………………………………….53
Table 8 The effect of H3PO3 on inhibition of mycelium growth,
sporangium formation and zoospore germination of
Phytophthora nicotianae……………………………………..62
Table 9 The inhibitory effect of Bacillus sp. (LB5) on mycelium
growth and zoospore germination of Phytophthora
nicotianae…………………………………………………….65
Table 10 Susceptibility response of lavender cultivars/varieties to
Phytophthora nicotianae in the greenhouse………………….68
Table 11 The effect of control agents on root rot of lavender after
inoculating pathogen to two susceptible varieties for 10 days.71
Table 12 The effect of soil amendment, solarization and Bacillus sp.
(LB5) application to diseased soil for control of root rot of
lavender at 20 days after treatment…………………………...74
List of Illustrations
Figures…………………………………………………………………..Page
Figure 1 Root rot symptoms caused by Phytophthora nicotianae
on Lavandula heterophylla. (A) Dieback symptom (B)
wilting (C) root discoloration and rotting and (D) healthy
root…………………………………………………................40
Figure 2 Colony and thallus morphology of Phytophthora
Nicotianae, (A) colony on PDA (B) colony onV-8 agar after
7days, (C) sporangia (D) chlamydospore (E) oospore and
(F) zoospores of P. nicotianae cultivated on V-8 agar……….43
Figure 3 Effect of various fungicides concentration of active
ingredient on mycelium growth of Phytophthora
nicotianae ISO3 on V-8 media for 4 days…............................56
Figure 4 The effect of various fungicides on of zoospore germination
of P. nicotianae…………………….........................................59
References
Agrios, G. N. (2005). Plant pathology. Elsevier academic press. USA. 922pp.
Allen, D. J. and S. S. Nandra (1975). Effects of pH and calcium concentration on the sporulation of Phytophthora isolates from Agave. Plant Dis. Rep. 59: 555-558.
Andersson, L. (1987). Survey and control of seedborne diseases of tomatoes in Zambia. Arbetsrapport, U-landsavdelningen, Sveriges Lantbrukuniversitet, No. 56: pp.20.
Andrivon, D., C. Beasse and C. Laurent (1994). Characterization of isolates of Phytophthora infestans collected in north-western France from 1988-1992. Plant pathol. 43: 471-478.
An, M., T. Haig and P. Hatfield (2001). On-site sampling and analysis of Fragrance from living lavender (Lavandula angustifolia L.) flowers by solid phase micro-extraction coupled to gas chromatography and ion-trap mass spectrometry. J. Chromatogr. A, 917: 245-250.
Anonymous (1983). Determination of the nature of cucumber blight in the field. Pp. 121-124. In Taiwan Agr. Res. Inst. Annu. Rept.
Babadoost, M. and S. Z. Islam (2003). Fungicide and seed treatment effects on seedling damping-off of pumpkin caused by P. capsici. Plant dis. 87: 63-68.
Balchin, M. L. and H. D. Etzkowitz (2002). Lavender: The genus Lavandula. CRC Press. 292pp.
Bashan, B., Y. Levy and Y. Cohen (1990). Variation in sensitivity of Phytopthhora infestans to Fosetyl-Al. Plant Pathol. 39: 134-140.
Bingham, F. T. and G. A. Zentmyer (1954). Relation of hydrogen-ion concentration of nutrient solution to Phytopthhora root rot of avocado seedlings. Phytopathology 48: 144-148.
Bowen, G. D. (1980). Misconceptions, concepts and approaches in rhizosphere biology. pp. 283-304. In Erwin, D.C., G. Bartnicki and P. H. Tsao. (eds.) Phytophthora. Its biology, taxonomy. Ecology and pathology. Published by The American Phytopathological Society, St. Paul, MN. USA.
Bowen, G. D. and A. D. Rovira (1999). The Rhizosphere and its management to improve plant growth. Adv. Agron. 66:1-102.
Brasier, C. M. 1969. Effect of light and temperature on reproduction in vitro in two tropical species of Phytopthhora. Trans. Br. Mycol. Soc. 52: 105-113.
Brasier, C. M. and M. J. Griffin (1979). Taxonomy of Phytophthora palmivora on cocoa. Trans. Br. Mycol. Soc. 72: 111-143.
Broadbent, P. and K. F. Baker (1974). Behavior of Phytophthora cinnamomi in soils suppressive and conducive to root rot. Aust. J. Agric. Res. 25: 121-137.
Cantino, E. C. and G. F. Turian (1959). Physiology and development of lower fungi. Annu. Rev. Microbiol. 13: 97-124.
Caten, C. E. (1971). Single spore variation in Phytophthora infestans and attenuation of strains in culture. Trans. Br. Mycol. Soc. 56: 1-7.
Chang, H. S. (1983). Crop diseases incited by Phytophthora fungi in Taiwan, Plant Prot. Bull. 25: 231-237.
Chan, L. G. and L. T. Kwee (1986). Comparative in vitro sensitivity of selected chemicals on Phytophthora palmivora from cocoa and durian. Pertanika. 9: 183-191.
Clinton, G. P. (1908). Artificial cultures of Phytophthora, with special reference to oospores. Conn. Agric. Exp. Stn., Annu. Rep. 32: 891-907.
Coffey, M. D. and L. A. Bowen (1984). In vitro variability among isolates of eight Phytophthora species in response to Phosphorous acid. Phythopathol. 74: 738-742.
Coffey, M. D. and M. C. Joseph (1985). Effects of H3PO3 and Fosetyl-Al on the life cycle of Phytophthora cinnamomi and Phytophthora citricola. Phythopatholology. 75: 1042-1046.
Cook, R. J. and K. F. Baker (1983). The Nature and Practice of Biological Control of Plant Pathogens. American Phytopatholo. Society, St. Paul, MN. 728 pp.
Cooke, L. R. and G. Little (2001). The effect of foliar application of Phosphonate formulations on the susceptibility of potato tubers to late blight. Pest Manage. Sci. 58: 17-25.
Cristinizio, G., F. Scala and C. Noviello (1983). Differentiation of some Phytophthora species by means of two- dimensional immunoelectrophoresis. Annale della Sciencie del'Universit di Napoli, Facult. de Portici, 17:77-89.
Damicone, J. (1990). Fungicide resistance management. Plant Pathol. 12: 7663-7668.
Davino, S., S. O. Cacciola, A. M. Pennisi and M. G. Li Destri Nicosia (2002). Phytophthora palmivora a new pathogen of Lavender in Italy. Plant Dis. 86: 561.
de Bary, A. (1876). Researches into the nature of the potato fungus, Phytophthora infestant. J. R. Agric. Soc. Engl. Ser. 2. 12: 239-269.
DeWaard M. A., S. G. Georgopoulos, D. W. Holloman, H. Ishii, P. Leroux, N. N. Ragsdale and F. J. Schwinn (1993). Chemical control of plant diseases: problems and prospects. Phytopathology 31: 403–431.
Divinagracia, G. G. (1969). Sporangial and oospore formation by Phytophthora capsisic. Philipp. Agric. 53: 148-165.
El Fahl, A. M. and E. L. Calvert (1976). The effect of soil treatment with sulfur and lime on the incidence of potato diseases with special reference to blight. Rec. Agric. Res. Minist. Agric. Irel. 24: 7-12.
Englander, L. and L. F. Roth (1980). Interaction of light and sterole on sporangium and chlamydospore production by Phytophthora lateralis. Phytopathology 70: 650-654.
Erwin, D. C., S. B. Garcia and P. H. Tsao (1983). Phytophthora, its biology, taxonomy, ecology and pathology. Am. Phytopathol. Soc., St. Paul, MN. USA. 392pp.
Feld, S. J., J. A. Menge and L. H. Stolzy (1990). Influence of drip and furrow irrigation on Phytophthora root rot of citrus under field and greenhouse conditions. Plant Dis. 74(1):21-27.
Ferih, J. A., J. A. Menge, P. H. Tsao and H. D. Ohr (1981a). Metalaxyl and efosite aluminium for control of Phytophthora gunnosis and rot root of citrus. Plant Dis. 65: 654-657.
Fiddman, P. J. and S. Rossall (1995).Selection of bacterial antagonists for biological control of Rhizocotonia solani in oilseed rape (Brassica napus). Plant pathol. 44: 695-703.
Forster, H., J. E. Adaskaveg, D. H. Kim and M. E. Stanghellini (1998). Effect of Phosphite on tomato and pepper plants and on susceptibility of pepper to Phytophthora rot and crown rot in hydroponic culture. Plant dis. 82: 1165-1170.
Forster, H., O. K. Ribeiro and D. C. Erwin (1982). Factors affecting oospore germination of Phythopthora megasperma. Phythopathology. In Erwin, D. C., G. Bartnicki and P. H. Tsao. (eds.) Phytophthora: Its biology, taxonomy. Ecology and pathology. Published by The Am. Phytopatholo. Soc., St. Paul, MN. USA.
Förster, H., P. Oudemans and M. D. Coffey (1990). Mitochondrial and nuclear DNA diversity within six species of Phytophthora. Exp. Mycol. 14:18-31.
Gerrettson-Cornell, L. (1989). A compendium and classification of the species of the genus Phytophthora de Barry by the canon of the traditional taxonomy. Forestry Commission, New South Wales, Sydney. 103pp.
Gregory, P. H. (1983). Some major epidemics caused by Phytophthora. In: Erwin, D. C., S. B. Garcia and P. H. Tsao. (eds.), Phytophthora: Its Biology, Taxonomy, Ecology, and Pathology, p. 271-278. American Phytopathological Society, St. Paul, MN.
Grant, B. R., R. H. Dunstan, J. M. Griffith, J. O. Niere and R. H. Smillie (1990). The mechanisms of phosphonic (phosphorous) acid action in Phytophthora. Australas. Plant Path. 19: 115-117.
Guest, D. I. 1984. Modification of defense responses in tobacco and Capsicum following treatment with fosetyl-Al [aluminium tris (o-ethyl phosphonate)] Physiolo. Plant Pathol. 25: 125-134.
Guest, D. I. and Bompeix (1990). The complex mode of action of phosphonates. Australas. Plant Path. 19: 113-115.
Hall, G. (1993). An integrated approach to the analysis of variation in Phytophthora nicotianae and a re-description of the species. Mycol Research, 97(5): 559-574.
Halsall, D. M. and R. I. Forrester (1977). Effects of certain cations on the formation and infectivity of Phytophthora zoospores. Microbiol. 23: 994-1001.
Harman, G. E. (1991). Seed treatments for biological control of plant disease. Crop Prot. 10: 166-171.
Harnish, W. N. 1965. Effect of light on production of oospores and sporangia in species of Phytophthora. Mycologia. 57: 85-90.
Hendrix, J. W. (1964). Light-cholesterol relationships in morphogenesis of Phytophthora palmivora and P. capsici sporangia. Mycologia. 59: 1107-1111.
Heungens, K. and J. L. Parke (2000). Zoospore Homing and Infection Events: Effects of the Biocontrol Bacterium Burkholderia cepacia AMMDR1 on Two Oomycete Pathogens of Pea (Pisum sativum L.). Appl. Environ Microbiol. 66: 5192–5200.
Hine, R. B. and M. Aragaki (1963). Effect of radiation on sporangial production of P. parasitica on artificial media and detached papaya fruit. Phytopathology. 53: 854-856.
Ho, H. H. (1990). Taiwan Phytophthora. Bot. Bull. Academia Sinica 31: 305-22.
Ho, W. H. and W. H. Ko (1997). A simple method for obtaining single-spore isolates of fungi. Bot. Bull. Acad. Sin. 38: 41-44
Ho, H. H., H. S. Chang and P. J. Ann (1995). The genus Phytophthora in Taiwan. Inst. Bot. Acad. Sin. Mono.15: 57-68.
Ho, H. H. and S. C. Jong (1989). Phytophthora nicotianae (P. parasitica). Mycotaxon 32: 199-217.
Hohl, H. R. (1975). Levels of nutritional complexity in Phytophthora: Lipids, nitrogen sources and growth factors. Phytopathol. Z. 84: 18-33.
Honour, R. C. and P. H. Tsao (1973). Lysis of Phytophthora parasitica oospores in soil. Abstract. 2nd Int. Congr. Plant Pathol.
Hsu, S. T. and M. L. Chang (1989). Effect of soil amendments on survival of Pseudomonas solanacearum. Plant Prot. Bull. 31:21-33.
Huang, J. W. (1993). Prospects for control of soilborne plant pathogens by soil amendment. Curr. Topics Bot. Res. 1:223-235.
Huang, J. W. and S. K. Sun (1983). Effects of soil amendment on Fusarium wilt of watermelon. Plant pathol. 25: 127-137.
Hutchinson, R. W. and T. E. Mulligan (1971). The control of tuber blight in Kerr’s pink potatoes by application of sulfur to the soil. Rec. Agric. Res. Minist. Agric. North Irel. 19: 13-17.
Hwang, B. K. and N. K. Sung (1989). Effect of metalaxyl on capsidiol production in stems of pepper plants infected with Phytophthora capsici. Plant Dis. 73: 748-751.
Ippolito, A., G. Lima and F. Nigro (1992). Influence of irrigation method on Phytophthora root rot of citrus. Preliminary results. Phytopathologia Mediterranea, 31(3):170-174.
Iqbal, M. J., K. Iftikhar and M. B. Iiyas (1993). Evaluation of chickpea germplasm for resistance against wilt disease. Jour. Agri. Res. 31: 449-453.
Jackson, T. J.; T. Burgess, I. Colquhoun and G. E. S. Hardy (2000) Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathol. 49: 147-154.
Jones, J. P. and S. S. Woltz (1969). Fusarium wilt (race 2) of tomato: Calcium, pH, and micronutrients effects on disease development. Plant dis. Reptr. 53: 276-279.
Kaosiri, T. and G. A. Zentmyer (1980). Protein, esterase and peroxidase patterns in the Phytophthora palmivora complex from cocoa. Mycologia 72: 988-1000.
Ko, W. H. (1978). Heterothallic Phytophthora: Evidence for hormonal regulation of sexual reproduction. J. Gen. Microbiol. 107:15-18.
Katan, J., A. Greenberger, H. Alon and A. Grinstein (1976). Solar heating by polyethylene mulching for the control of diseases caused by soilborne pathogens. Phytopathology. 66: 683-688.
Kannwischer, M. E. and D. J. Mitchell (1981). Relationships of numbers of spores of Phytophthora parasitica var. nicotianae to infection and mortality of tobacco. Phytopathology. 71: 69-73.
Katan, J. (1981). Solar heating (solarization) of soil for control of soilborne pathogens. Annu. Rev. Phytopathol., 19: 21 l-236.
Katan, J., A. Grinstein, A. Greenberger, 0. Yarden and J. E. Devay (1987). The first decade (1976-1986) of soil solarization (solar heating): A cronological bibliography. Phytoparasitica, 15: 229-255.
Katan, J. and J. E. Devay (1991). Soil Solarization. CRC Press, Boca Raton, FL, 267 pp.
Keen, N. T. (1982). Specific recognition in gene-for-gene host-parasite systems. Adv. Plant Pathol. 1: 35-82.
Kincaid, R. R. and F. G. Gammon (1954). Incidence of tobacco black shank directly related to soil pH. Plant Dis. Rep. 38: 852-853.
Ko, W. H. and F. K. Hora (1972). Identification of an Al ion as a soil fungitoxin. Soil Sci. 113: 42-45.
Larkin, R. P. and R. F. Deborah (1998). Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis. 82:1022-1028.
Leonian, L. H. (1935). The effects of auxins upon Phytophthora cactorum. Am. J. Bot. 23: 188-190.
Lewis, J. A. (1973). Effect of mineral salts on Aphanomyces euteiches and Aphanomyces root rot of peas. Phythopathology. 63: 989-993.
Lorita, M., A. D. Pietro, C. K. Hayes, S. L. Woo and G. E. Harman (1993). Antifungal, synergistic interaction between chiti-nolytic enzymes from Trichoderma harziaanum and enterobacter cloacae. Phythopathology. 83: 721-728.
Mahrer, Y., R. Avissar, 0. Naot and J. Katan (1987). Intensified soil solarization with closed greenhouse: numerical and experimental studies. Agric. For. Meteorol. 41: 325-330.
Malajczuk, N., A. J. McComb and C. A. Parker (1975). An immunofluorescence technique for detecting Phytophthora cinnamomi Rands. Aust. J. Bot. 23: 289-309.
Malajczuk, N., G. D. Bowen and F. C. Greenhalgh (1978). A combined fluorescent antibody and soil sieving technique for detecting Phytophthora cinnamomi in soil. Soil Biol. Biochem. 10: 437-438.
Malajczuk, N., H. J. Nesbitt and A. R. Glenn (1977). A light and electron microscope study of the interaction of soil bacteria with Phytophthora cinnamomi Rands. Can. J. Micobiol. 23:1518-1525.
Matheron, M. E. and M. Porchas (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation and zoospore cyst germination of three Phytophthora spp. Plant Dis. 84: 454-458.
Matsumoto, T. (1946). Tobacco disease in Formosa. Mem. Fac. Agr., Nat. Taiwan Univ. 1: 1-26.
Maurer, C. L. and R. Baker (1963). Chitin-lignin amendments for control of bean root rot. Phythopathology. 53: 882
McCarter, S. M. (1965). Effect of certain soil environmental factors and host nutrition on black shank disease development in tobacco. Diss. Abstr. 26: 6955.
Merwe, M. V. (1992). Biological control of Phytophthora root rot in vitro and in vivo. S. Afr. Growers’ Association Yearbook. 15: 27-28.
Milus, E. and A.Rothrock (1997). Efficacy of bacterial seed treatments for controlling Phythium root rot. Plant. Dis. 81: 180-184
Minuto, A., M. L. Gullino, P. Titone and A. Garibaldi (2001). Influences of cultural practices on incidence of Phytophthora nicotianae var. parasitica causing root rot of lavender (Lavandula officinalis L.). Phythopathologia Mediterranea. 40: 45-54.
Mitchell, R. (1963). Addition of fungal cell wall components to soil for biological disease control. Phythopathology. 53: 1063-1071.
Newhook, F. J., G. M. Waterhouse and D. J. Stamps (1978). Tabular keys to the species of Phytophthora de Barry. Mycol. Pap. 143: 1-20.
Ouimette, D. G and M. D. Coffey (1989a). Comparative Antifungal Activity of four phosphonate compounds against isolates of nine Phytophthora species. Phytopathology. 79: 761-767.
Ouimette, D. G and M. D. Coffey (1989b). Phosphonate levels in avocado (Persia americana) seedlings and soil following treatment with Fosethl-Al or potassium phosphonate. Plant Dis. 73: 212-215.
Papavizas, G. C. and J. A. Lewis (1989). Effect of Gliocladium and Trichoderma on damping off and blight of snap bean caused by Sclerotium rolfsii in the greenhouse. Plant Pathol. 38: 277-286.
Papavizas, G. C., J. H. Bowers and S. A. Johnston (1981). Selective isolation of Phytophthora capsisic from soils. Phytopathology. 71: 129-133.
Pegg, K. G. (1977). Soil application of elemental sulfur as a control of Phytophthora cinnamomi root and heart rot of pineapple. Aust. J. Exp. Agric. Anim. Husb. 17: 859-865.
Pelletier, A. & J. Sygush. (1990) Purification and characterization of three chitosanase activities from Bacillus megaterium P1. Appl Environ Microbiol 56: 844-848.
Perez, V., A. M. Mamdouh, J. C. Huet and G. Bompeix (1996). Enhanced secretion of elicitins by Phytophthora fungi exposed to phosphonate. Cryptogamie Mycol. 16: 191-194.
Pethybride, G. H. and P. A. Murphy (1913). On pure cultures of Phytophthora infestans de Barry and the development of oospores. Proc. R. Dubl. Sci. Soc. 13: 566-588.
Pullman, G. S. Devay, J. E. and R. H. Garber (1981). Soil solarization and thermal death: a logarithmic relationship between time and temperature for soilborne pathogens. Phytopathology. 71: 959-964.
Pullman, G. S., J. E. DeVay, J. E. Garber and R. H. Weinhold 1981. Soil solarization: effects of Verticillium wilt of cotton and soil borne populations of Verticillium dahliae, Phythium spp., Rhizoctonia solani and Thielaviopsisbasicola. Phytopathology 71: 954-959.
Renson, S., C. G. Decrck, A. Bouseta and S. Collin (2002). Floral quality and discrimination of Lavandula stoechas, Lavandula angustifolia and Lavandula angustifolia x latifolia honeys. Food Chemistry 79: 453-459.
Ribeiro, O. K. (1983). Physiology of asexual sporulation and spore germination in Phytophthora. In: Erwin D. C., Bartnicki-Garcia, P. H. Tsao, (eds.) Phytophthora. Its Biology, Taxonomy, Ecology, and Pathology. APS Press. St. Paul MN. USA. pp. 55-70.
Robbins, W. J. (1938). Thiamin and growth of species of Phytophthora. Bull. Torrey Bot. Club 65: 267-276.
Robinson, R. A. (1969). Disease resistance terminology. Rev. Appl. Mycol. 48: 593-606.
Sadfi, N., M. Cherif, I. Fliss, A. Boudabous and H. Antoun (2001). Evaluation of bacterial isolates from salty soils and Bacillus Thuringiensis strains for biocontrol of Fusarium dry rot of potato tubers. J. Plant Pathol. 83: 101-118.
Sarbini, G. and T. Kommedahl (1977). Effect of bacterial seed treatment on stand and yield of soybeans in Phytophthora infested soil. Phytopathol. Soc. 4: 146-147.
Schmiihenner, A. F. (1973). Isolation and identification methods for Phytophthora and Phythium. Proc. Woody ornamental dis. workshop 1: 94-110.
Schneider, F. M, N. A. Streck and G.A. Buriol (1993). Soil temperature modifications caused by solarization in nurseries. Ciencia Rural. 23: 385-386.
Schwinn, F. J. (1992). Significance of fungal pathogens in crop production.
Pestic. Outlook 3:18-25.
Smiley, R. W. (1975). Forms of nitrogen and the pH in the root zone and their importance to root infections. Pp. 55-62. In: G. W. Bruehl, (ed.): Biology and control of soil-borne plant pathogen. Minnesota. USA.
Smillie, R., B. R. Grant and D. Guest (1989). The mode of Action of Phosphite: Evidence for both direct and indirect modes of action of three Phytophthora species in plants. Phythopathology. 79: 921-926.
Stamps, D. J., G. M. Waterhouse, F. J. Newhook and G. S. Hall (1990). “Revised tabular key to the species of Phytophthora.” Mycol. Pap. 162: 1-28.
Staub, T., H. Dahmen, P. Urech and F. Schwinn (1979). Failure to select for in vitro resistance in Phytophthora infestans to acylalanine fungicides. Plant Dis. Rep. 63:385-389.
Stevenson, W. R. (1991). Buckeye rot and Phytophthora root rot. In: Jones, J. B., R. E. Stall and T. A. Zitter, (eds.) Compendium of Tomato Diseases. St Paul, USA. APS Press.
Streck, N. A., F. M. Schneider and G. A. Buriol (1993). Soil temperature modifications caused by solarization in nurseries. Ciencia Rural. 23: 385-386.
Street, J. J. and G. Kidder (1989). Soils and plant nutrition. UF/IFAS, Fla. Coop. Ext. Serv. Fact Sheet SL-8.
Sun, S. K. and J. W. Huang (1985). Formulated soil amendment for controlling Fusarium wilt and other soilborne diseases. Plant Dis. 69:917-920.
Timmer, L. W. and J. H. Graham (2003). Phytophthora diseases of citrus. Plant Pathol. SL127: 1-11.
Timmer, L. W., S. E. Zitko, T. R. Gottwald and J. H. Graham (2000). Phytophthora brown rot of citrus: Temperature and moisture effect on infection, sporangium production and dispersal. Plant Dis. 84: 157-163.
Troutman, J. L. and J. L. La Prade (1962). Effect of pH on black shank diseases of tobacco. Va. Agric. Exp. Stn. Tech. Bull. 158: 162.
Tsao, P. H. (1969). Vital fluorescent labeling as applied to soil ecological studies of Phytophthora parasitica (Abstr.) Phytopathology. 59: 16.
Tsao, P. H and G. A. Zentmyer (1979). Suppression of Phytophthora cinnamomi and Phytophthora nicotianae in urea amended soils. Pp. 191-199. In: B. Schippers and W. Gams (eds.) Soil-borne plant pathogens. Academic Press, London & New York.
Tsay, H. C. (2002). Root rot of lavender caused by Phytophthora parasitica in Taiwan. Plant Pathol. Bull. 11: 229-232.
Tucker, C. M. (1931). Taxonomy of the genus Phytophthora de Bary. Mo. Agr. Exp. Sta. Res. Bull. 184: 80.
Walker, R., A. A. Powel and B. Seddon (1998). Bacillus isolates from spermospheres of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Phythium species. J. Appl. Microbiol. 84: 791-801.
Waterhouse, G. M. (1963). Keys to the species of Phytophthora de Bary. Mycol. Pap. 92: 1-22.
Waterhouse, G. M. (1970). The species Phytophthora de Bary, 2nd Ed. Mycologia. 122: 1-59.
Wicks, T. and T. C. Lee (1982). Evaluations of fungicides applied after infection for control of Plasmopara viticola on grapevine. Plant Dis. 66: 839-841.
Wills, W. H. (1954). The utilization of carbon and nitrogen compounds by Phytophthora parasitica Dastur var. nicotianae (Breda de Haan) Tucker. J. Elisha Mitchell Sci. Sco. 70: 231-235.
Wilson, C. L. and M. E. Wisnieswski (1989). Biological control of post harvest diseases of fruits and vegetables an emerging technology. Phythopathology. 27: 425-441.
Wong, F. P. and W. F. Wilcox (2001). Comparative physical mode of action of azoxyystrobin, mancozeb and metalaxyl against Plasmopara viticola (grapevine downy mildew). Plant Dis. 85: 649-656.
Yamamoto, M. and J. Tanino (1961). Physiological studies on the formation and germination of sporangia of Phytophthora infestans (Mont) De Barry. Forsch. Geb. Pfanzenkr. (Shokubutsu Byogai Kenkyu) 7: 7-22.
Yoshikawa, M. and H. Masago (1977). Effect of cyclic AMP on catabolite-repressed zoosporangial formation in Phytophthora capsici. Can. J. Bot. 55: 840-843.
Zentmyer, G. A. (1978). Origin of root rot resistant rootstocks. Calif. Avocado Soc. Yearb. 62: 87-89.
Zentmyer, G. A. (1980). Phytophthora cinnamomi and the diseases it causes. Monogr. 10. Am. Phythopathol. Soc., St. Paul, Mn. 96 pp.
Zentmyer, G. A. and O. K. Reibeiro (1977). The effect of visible and near-visible radiation on sporangium production by Phytophthora cinnamomi. Phythopathology. 67: 91-95.
Zhang, K. M., Y. D. Li and F. C. Zheng (1993). Identification and mating type of Phytophthora species on citrus trees in Hainan and Zhanjiang. Acta Phytopathologica Sinica, 23(2):179-185.
Adam, K. L. (2004) Lavender production, products, markets and entertainment farms. National Sustainable Agriculture. Retrieved
http://www.attra.ncat.org/attra-pub/PDF/lavender.pdf
Bension, D. M., J. L. Hall, G. W. Moorman, M. L. Daughtrey, A. R. Chase and K. H. Lamour (2002) The history and diseases of poinsettia, the christmas flower. Plant health progress. Retrieved http://www.plantmanagementnetwork.org/pub/php/xmasflower/
Bernal G., A. I. Andres and L. Ciamp (2002) Isolation and partial purification of a metabolite from a mutant strain of Bacillus sp. with antibiotic activity against plant pathogenic agents. Electr. J. of
Biotechnol. Vol. 5. Retrieved http://www.ejbiotechnology.info/content/vol5/issue1/full/3/index.html
Cook, D. and J. Smith (2002) Crop protection compendium. Global Module, 2nd Edition. CAB International, UK. Retrieved
http://www.phytid.org/CPC/Data/P.nicotianae.htm
Davis, J. G. and C. R. Wilson (2005) Choosing a soil amendment. Horticulture. CSU. Cooperative Extension. Retrieved http://www.ext.colostate.edu/puds/garden/07235.html
Duniway, J. M. (1983) Role of physical factors in the development of Phytophthora diseases. In: Cook, D. and J. Smith (eds.). Crop protection compendium. Global Module, 2nd Edition. UK. Retrieved
http://www.phytid.org/CPC/Data/P.nicotianae.htm
Elliott, C. G. (1983) Physiology of sexual reproduction in Phytophthora. In: Cook, D. and J. Smith (eds.). Crop protection compendium. Global Module, 2nd Edition. CAB International, UK. Retrieved
http://www.phytid.org/CPC/Data/P.nicotianae.htm
Fry, W. E. (1982) Principles of plant disease management. New York, USA. Retrieved
http://www.agric.gov.ab.ca/department/deptdocs.nsf/all/cropresist
Hagan, A. and J. Mullen (2000) Phytophthora Root Rot on Woody Ornamentals: Alabama Integrated Pest Management. USA. Retrieved
http://www.griffin.peachnet.edu/ga/cobb/Horticulture/Diseases.htm
Hansen, M. A. (2000) Phytophthora root rot of rhododendron and azalea. Virginia Cooperation Extension. Retrieved
http://www.ext.vt.edu/pubs/plantdiseasefs/450-615/450-615.html
Hewitt, G. (2000) New modes of action of fungicides. CABI. Retrieved
http://www.researchinformation.co.uk/pest/2000/B006311H.PDF
Linderman, R. G. (2003) Biological control options for Phytophthora species. Sudden Oak death. Horticultural Crops Research. Retrieved
http://www.apsnet.org/online/SOD/pdf/linderman.pdf
Lucas, G. B. (1975) Diseases of tobacco. Raleigh, N. Carolina, USA: Biological Consulting Associates. In: CPC Data Sheet. Retrieved
http://www.phytid.org/CPC/Data/P.nicotianae.htm
McCoy, J. A. (2002) Lavender history, taxonomy and production. Mountain Horticultural Crops Research and Extension Center. Retrieved
http://www.ces.ncsu.edu/fletcher/staff/jmdavis/lav.html
McGrath, M. T. (2004) What are fungicides? The plant health instructor. DOI: 10. 1093. The Am. Phythophathol. Soc. Retrieved
http://www.apsnet.org/education/IntroPlantPath/Tropics/Fung/pdfs/co
Petzoldt, C. (2004) Disease management. Integrated crop and pest management guidelines for commercial vegetable production. A Cornell Cooperative Extension Publication. Retrieved
http://www.nysaes.cornell.edu/recommends/2frameset.html
Schooley, J. (2003) Ginseng and medicinal herbs specialist/ OMAF. Medicinal herbs in the garden, field and marketplace. Retrieved
http://www.omafra.gov.on.ca/english/crops/hort/herbs/marsh.htlm
Wiesenfeld, E. (1999) Aroma profiles of various Lavandula species. Scien. Instru. Services, Inc. Retrieved
http://www.sisweb.com/referenc/applnote/noville.htm
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔