跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.80) 您好!臺灣時間:2025/01/24 21:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾彥翰
研究生(外文):Yan-Han Tseng
論文名稱:使用形狀化梯度磁場獲取魔角旋轉微成像
論文名稱(外文):Microscopic magnetic resonance imaging under magic-angle-spinning using shaped pulse field gradients
指導教授:丁尚武
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:71
中文關鍵詞:魔角旋轉微成像形狀化梯度
外文關鍵詞:shaped pulse field gradientsMicroscopic magnetic resonance imaging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:135
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著核磁共振微成像技術的發展,目前空間解析度已逼近微米甚至亞微米。它在材料和生物體系中的研究起越來越重要的作用。為了研究獲取更精確的結構和動態數據,有必要進一步提高解析度。有兩個途徑達到此一目標。一是利用邊緣場的強梯度使相鄰像素的共振頻率差大於內部相互作用導致的譜線展寬。但此一方法往往只能在一個維度上實現高解析。因此第二個途徑,即通過消除固態或軟物質內部相互作用而達到高解析是更有普遍意義的方法。在固態核磁共振光譜學中,通常藉助於魔角旋轉(結合多脈衝去偶)來消除固態或軟物質樣品中和自旋之間相互作用的各向異性而使光譜的解析度大為提高。因此,魔角旋轉方法也可以應用於微成像而使影像有更好的解析度並節省成像時間。不過,將魔角旋轉用於微成像時,必須設法產生能跟蹤樣品旋轉的用於相位編碼和頻率編碼的梯度磁場。已有文獻報導的魔角旋轉微成像方法均採用特製的硬體來產生與魔角旋轉同步的交變梯度場。這種方法不但在技術上複雜,跟蹤效果也不夠理想。因此本研究開發了一個新的魔角旋轉微成像序列。本序列利用任意函數產生器結合梯度脈衝和梯度場放大器,產生一個數位控制的形狀化的梯度磁場來跟蹤樣品旋轉。此方法無需特製的硬體,可以在任何配有波型產生器的固態NMR譜儀上進行。脈衝序列中的同步觸發使得樣品轉速出現波動時亦可以保證梯度改變能跟蹤樣品旋轉。我們採用假體驗證了該方法的可行性。在高至1800 Hz的轉速範圍內可以實現較好的跟蹤而得到不錯的微影像。最後在固定大部份參數下(如轉速、厚度、np、 nv、nt=8、 FOV),我們得到了初步的影像結果。
第一章 緒論...............................................................................................................1
第二章 核磁共振原理簡介.....................................................................................4
2.1核磁共振的原理...................................................................................................4
2.2 RF(Radio Frequency)射頻場.................................................................................6
2.3 原子核自旋所形成磁矩與RF射頻場的關係..................................................7
2.4 T1以及T2的鬆弛過程............................................................................................8
2.5 T2*鬆弛................................................................................................................10
2.6 Bloch equation......................................................................................................11
第三章 磁共振成像基本原理...............................................................................13
3.1磁共振成像訊號形成的過程............................................................................13
3.2空間編碼(spatial encoding) .................................................................................13
3.3頻率編碼(frequency encoding) ...........................................................................14
3.4相位編碼(phase encoding) ..................................................................................15
3.5 k空間(k space) ....................................................................................................16
3.6截面選擇(slice selection) ....................................................................................17
3.7空間編碼的基本流程.........................................................................................17
3.8尤拉旋轉矩陣......................................................................................................18
3.9解析度...................................................................................................................20
第四章譜線寬化的來源..........................................................................................22
4.1固體中的自旋Hamiltonian..................................................................................23
4.2化學位移相互作用(chemical shift interaction) .................................................24
4.3偶極-偶極作用力(dipole- dipole interaction) ....................................................29
4.4四極作用力(quadrupole interaction) ..................................................................32
4.5魔角旋轉(magic angle spinning) ........................................................................35
4.6固體核磁共振成像方法...................................................................................36
4.7魔角旋轉成像......................................................................................................36
4.8魔角旋轉成像的原理.........................................................................................38
4.8.1實驗座標下的梯度......................................................................................38
4.8.2旋轉座標下的梯度......................................................................................31
第五章固體成像硬體簡介....................................................................................44
5.1射頻線圈............................................................................................................44
5.2梯度系統............................................................................................................45
5.3磁場.....................................................................................................................45
第六章 結果與討論..............................................................................................47
6.1 脈衝序列..........................................................................................................48
6.2 樣品...................................................................................................................48
6.3 討論...................................................................................................................49
參考文獻................................................................................................................67
1. E. M. Purcell, H. C. Torry, and R. V. Pound, Phys. Rev. 1946, 46, 37.
2. F. Bloch, W. W. Hansen, and M. Packard, Phys. Rev. 1946, 46, 127
3. P. C. Lauterbur, Nature . 1973, 242, 190.
4. A. Abragam, Principles of Nuclear Magnetism, Oxford Univ. Press, Oxford , 1961.
5. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics Publishing, Bristol and Philadelphia, 1998.
6. R. N. Bracewell, The Fast Fourier Transform, Prentice-Hall, Englewood Cliffs, NJ, 1974.
7. JB Miller, Prog Nucl Magn Reson 1998, 33, 273.
8. M Munowitz, Pines A. Adv Chem Phys. 1958, 61, 145.
9. M. M. Maricq and J. S. Waugh, J. Chem. Phys. 1979, 70, 3300 .
10. M. Feike, D. E. Demco, R. Graf, J. Gottwald, S. Hafner, and H. W. Spiess, J. Magn. Reson. A, 1996, 122, 214.
11. Y. Ba and W. S. Veeman, Solid State NMR, 1994, 3, 249.
12. D. I. Houl, J Magn. Reson. 1979, 33, 183.
13. R. Tycko and G. Dabbagh, 1990, 173, 461.
14. S. Hafner and H. W. Spiess, Solid State NMR, 1997, 8, 17.
15. D. E. Demco, S. Hafner, and H. W. Spiess, J. Magn. Reson, 1995, 116, 36.
16. U. Haeberlen and J. S. Waugh, Phys, Reson, 1968, 175, 453.
17. P. D. Buckley, K. W. Jolley, and D. N. Pinder, Progr. NMR Spectrosc, 1975, 10, 1.
18. J. Gottwald, D. E. Demco, R. Graf, and H. W. Spiess, Chem. Phys. Lett., 1995, 243, 314.
19. G Schauss, B Blümich, H. W. Spiess , J Magn Reson 1991, 95, 437.
20. A. J. Sederman, K. G. Hollingsworth, M. L. Johns , L. F. Gladden, J. Magn. Reson 2004, 171, 118.
21. P. Bluemer. B. Bluemich, Prog. NMR Spectrosc. 1994, 30, 211.
22. K. T. Mueller, E. W. Wooten and A. J. Pines. J. Magn. Reson. 1991, 92, 620.
23. S Matsui, Chem Phys Lett 1991, 179, 187.
24. E. Rommel, S. Hafner and R.Kimmich, J. Magn. Reson. 1990, 86, 264.
25. E. Günther, B. Blümich, H. W. Spiess, Chem Phys Lett. 1991, 184, 251.
26. A. A. Samoilenko, D. Yu. Artemov and L. A. Sibeldina, Russ. J. Phys. Chem. 1987, 61, 1623.
27. M. L. Buszko, G. E. Maciel, J. Magn. Reson. A 1993, 104, 172.
28. B. H. Suits and J. L. Lutz , J. Appl Phys. 1989, 65 , 3728
29. T. B. Benson, P. J. McDonald. J Magn Reson 1995, A 112, 17.
30. R. E. Botto, G. D. Cody, S. L. Diekman, D. C. French, N Gopalsami, Rizo P. Solid State Nucl Magn Reson. 1996, 6, 389.
31. Miller, D. G. Cory, A. N. Garroway, Chem Phys Lett 1989, 164, 1.
32. P. Jezzard, J. J. Attard, T. A. Carpenter, L. D. Hall, Prog. NMR Spectrosc. 1991, 23, 1.
33. J. B. Miller, A. N. Garroway, J Magn Reson 1989, 82, 529.
34. G. Schauss, B. Blümich, H. W. Spiess, J. Magn. Reson. 1991, 95, 437.
35. Garroway AN, Baum J, Munowitz MG, Pines A. J Magn Reson. 1984, 60, 337.
36. J. H. Baltisberger, S. Hediger, L. Emsley, , J. Magn. Reson. 2005, 172, 79
37. D. G. Cory, A. N. Garroway and J. B. Miller, J. Magn. Reson. 1989, 22, 948.
38. S. Hafner, D. E. Demco, R . Kimmich. Solid State Nucl Magn Reson. 1996, 6, 275.
39. E.W. Randall, A. A. Samoilenko, T. Nunes. J Magn Reson 1995, A 116, 122.
40. F. Weigand, B. Blümich, H. W. Spiess. Solid State Nucl Magn Reson. 1994, 3, 59.
41. P Bodart, T Nunes, E. W. Randall. Solid State Nucl Magn Reson. 1997, 8, 257.
42. W. S. Veeman, D. G. Cory, Adv. Magn. Reson. 1989, 13, 43.
43. W. S. Weeman and G. Bijl, Magn. Reson. Imag. 1992, 10, 755.
44. M. M. Maricq, J. S. Waugh, J Chem Phys 1979, 70, 3300.
45. K. Takegoshi, C. A. McDowell, Chem Phys Lett. 1985, 116, 100.
46. J. H. Iwamiya, S. W. Sinton. Solid State Nucl Magn Reson. 1996, 6, 333.
47. D. G. Cory, J. W. M. van Os, W. S. Veeman, J. Magn. Reson. 1988, 76, 543.
48. D. G. Cory and W. S. Veeman. J Magn Reson. 1998, 80, 259.
49. P. J. Mcdonald and P. F. Tokarczuk, J. Phys. E: Sci. Instrum.1989, 22, 948
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top