跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/10 22:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:施盈如
研究生(外文):Ying-ru Shi
論文名稱:用各類加權核磁共振微成像方法研究芝麻籽的結構與發育
論文名稱(外文):The Structure and Development of the Sesame Seed Studied with Microscopic Magnetic Resonance Imaging with Various Weighting Approaches
指導教授:丁尚武
指導教授(外文):Shang-Wu Ding
學位類別:碩士
校院名稱:國立中山大學
系所名稱:化學系研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:190
中文關鍵詞:萌芽鬆弛化學位移選擇成像芝麻磁共振微影像代謝體學
外文關鍵詞:germinationμ-MRISesamum indicum LmetabonomicsCSSIrelaxation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:1
摘要

我們知道核磁共振微成像技術(μMRI)能以非侵入性的方式在微米尺度上研究材料和生物體內結構和動態的資訊。μMRI 的另外一個獨特的功能是針對同一樣品,可以通過不同的加權方式獲取不同的影像,而其中每一個影像都有意義。本工作報告以各種加權成像技術來研究一種植物種籽芝麻籽(Sesamum indicum L.)的生長過程的一些結果。整個實驗過程中並不需要對植物體作解剖分析,即能獲得植物在各個生長階段中之生理結構,水分傳輸及代謝過程等資訊。

在本次工作中我們除了取得自旋回波多截面(SEMS)下的T1 和T2 的影像外,也使用了CSSI 選擇影像(chemical shift selective imaging)技術。這些影像分別提供自旋動態、化學環境、自旋連結以及週圍環境的特徵。為了研究發育過程,我們將芝麻籽置於純水或含酸鹼的溶液中,在不同發芽階段(由幾十分鐘到幾十小時)抓取影像。由這些影像可以分析出水(或其他分子)之分佈、化學環境及動態隨不同發芽階段的變化,從而首次實時地觀察到芝麻籽發芽的全程內部過程。這些資訊再配合溫度和發芽時溶液pH 值的變化得到的資料,結合植物生理學的已有資料,可以提供關於芝麻籽發育過程的生物化學和生物物理資訊。

一般而言,在複雜如一株活的植物的體系中,要獲取相關的微觀動態和結構資訊相當困難,此研究表明核磁共振微影像方法能用來做為此類探索的一個工具。特別是,由各類加權影像能推知一些悠關植物生理過程的重要資訊。
Microscopic magnetic resonance imaging (μMRI) is a powerful tool for studying the structure and dynamics of various biological systems in vivo. A particular advantage ofμMRI related to this type of applications is that many different images can be acquired on the same object, each of them being important and meaningful. In this work, we report the results of applyingμMRI to the study of the biological process of a real plant (sesame seed). With weighting of longitudinal and transverse relaxation, diffusion as well as multi-quantum coherences, a series of images of sesame seed in the process of germination, with spatial resolution of several micrometers or tens of micrometers, has been obtained (examples given in Fig.1). The images are analyzed based on the physiological characteristics of the sesame seed. Some insights are drawn from these images obtained with different weightings.
目 錄
第一章 緒論......................................1
1.1 磁共振微影像於植物代謝方面之應用.........1
1.2 目前感興趣的植物生理問題研究方向..... ...3
第二章 磁共振微影像...............................................4
2.1 磁共振影像原理...........................................5
2.2 磁場梯度(gradient )......................5
2.3 薄層選擇(slice selection)................9
2.3.1 薄層-選擇梯度.........................10
2.3.2 選擇薄片的RF脈衝…...................11
2.4 頻率編碼(frequency encoding)............14
2.5 相位編碼(phase encoding)................15
2.6 倒-空間(k-space)........................16
2.7 核磁共振鬆弛(nuclear magnetic relaxation)理論簡介.21
第三章 種籽生理學簡介............................30
3.1 芝麻Sesame (Sesamum indicum)種籽的物理特性.30
3.1.1 種籽的構造............................30
3.1.2 種籽的成分............................32
3.2 種籽的生理特性..........................34
3.2.1 種籽的發育與發芽......................34
3.2.2 種籽的休眠............................40
第四章 植物體系之MRI文獻回顧......................41
4.1 目前研究植物體系代謝方法簡介............41
4.2 近來NMR/I於植物代謝之研究回顧...........42
第五章 實驗材料與方法.............................44
5.1 核磁共振成像系統簡介....................44
5.2 實驗脈衝序列與參數設定..................46
5.2.1 Test 1 一維1H光譜脈衝序列.............46
5.2.2 Test 2 T1鬆弛參數量測脈衝序列.........46
5.2.3 Test 3 T2鬆弛參數量測脈衝序列.........46
5.2.4 Test 4 SEMS成像脈衝序列...............46
5.2.5 Test 5 CSSI成像脈衝序列...............47
5.3 研究材料與培養程序簡介..................47
5.4 實驗數據分析流程........................49
第六章 結果與討論..................................51
6.1 實驗結果分析............................51
6.1.1 Test 1 結果分析.......................52
6.1.2 Test 2 結果分析.......................55
6.1.3 Test 3 結果分析.......................65
6.1.4 Test 4 結果分析.......................76
6.1.5 Test 5 結果分析.......................88
6.2 問題討論................................98
6.2.1 一維1H光譜分析........................98
6.2.2 T1、T2動態資訊分析....................99
6.2.3 影像分析.............................100
6.2.4 R2分佈圖.............................100
第七章 總結與未來展望.............................101
7.1 總結...................................101
7.2 未來展望...............................103
第八章參考文獻....................................104
8.1 書籍文獻...............................104
8.2 論文文獻...............................104

-圖..............................................VI
-表...............................................X
書籍文獻:
1.Blümich B. Essential NMR for Scientists and Engineers. Springer, Berlin 2005.
2.Blümich B. NMR Imaging of Materials. Oxford 2000.
3.Callaghan PT. Principles of Nuclear Magnetic Resonance Microscopy. Clarendon Press, Oxford 1991.
4.Liang ZP, Lauterbur PC. Principles of Magnetic Resonance Imaging. New York 2000.
5.Cavanagh J, Fairbrother WJ, Palmer Ш AG, Skelton NJ. Protein NMR Spectroscopy: Principles and Practice. Academic press 1996.
6.Taiz L, Zeiger E. Plant Physiology, 3. Edition. Sinauer Associates, Inc. 2002.
7.柯勇. 植物生理學. 藝軒圖書出版社 2002.
8.葉育財等人和譯. 簡明植物生理學. 環球書局1992.

論文文獻:
9.Eggenberger U, Bodenhausen G. Modern NMR pulse experiments: A graphical description of evolution of spin systems. Angew Chem Int Ed 29(1990) 374-383.
10.Köckenberger W. Nuclear magnetic resonance micro-imaging in the investigation of plant cell metabolism. J Exp Bot 52(2001) 641-652.
11.Borthakur A, Charagundla SR, Wheaton A, Reddy R. T1ρ-weighted MRI using a surface coil to transmit spin-lock pulses. J Magn Reson 167(2004) 306-316.
12.郭華仁(年代)台大農藝學系種子研究室全球資訊網http://seed.agron.ntu.edu.tw
13.Baptista de Carvalho FG, Borghetti F, Buckeridge MS, Morhy L, Filho EX. Temperature-depended germination and endo-β-mannanase in sesame seeds. Rev Bras Fisiol Veg 13(2001) 139-148.
14.Avery GSJ. Structure and germination of tobacco seed and the developmental anatomy of the seedling plant. Am J Bot 20(1933) 309-327.
15.游添榮. 胡麻的營養成分、用途即及在生物技術之應用. 台南區農業專訊 47(2004) 14-16.
16.Ide T, Kushiro M, Takahashi Y, Shinohara K, Fukuda N, Yasumoto SS. Sesamin, a sesame lignan, as a potent serum lipid-lowering food component. Japa Int Res Cent Agr Sci 37(2003) 151-158.
17.Kato MJ, Davin LB, Lewis NG. Biosynthesis of antioxidant lignans in Sesamum indicum seeds. Phytochem 47(1998) p.583-591.
18.Yasumoto SS,Katsuta M, Okuyama Y, Takahashi Y, Ide T. Effect of sesame seeds rich in sesamin and sesamolin on fatty acid oxidation in rat liver. J Agr Food Chem 49(2001) 2647-2651.
19.戴守谷(博士論文), 曾志正(Advisor). 芝麻種籽發育過程中蛋白質體與油體形成及其主要蛋白質之基因表現與特性分析. 國立中興大學,農業生物科技學研究所 2000.
20.彭及忠(碩士論文), 曾志正(Advisor). 芝麻油體成熟過程中三個主要成份變化之研究. 國立中興大學,農業生物科技學研究所 1996.
21.Gray WM. (2004) Hormonal regulation of plant growth and development. PLoS Biol 2(2004) e311.
22.Larsson AM, Anderson L,Xu B, Muñoz IG, Usón I, Janson JC,Stålbrand, Ståhlberg J. Three-dimensional crystal structure and enzymic characterization of β-mannanase Man5A from blue mussel Mytilus edulis, J Mol Biol 357(2006) 1500-1510.
23.Kasperbauer MJ. Dark-germination of reciprocal hybrid seed from light-requiring and –indifferent Nicotiana tabacum, Physiol Plant 21 (1968) 1308-1311.
24.Steffens GL, Spaulding DW, Atkinson WO, Boriner CE, Nichols LA, H.Ross HF, Seltmann H, Shaw L. Regional tests with contact and systemic tobacco sucker agents. II. Burley tobacco, Tobacco Sci. 13 (1969) 117-120.
25.Steffens GL, Spaulding DW, Clark F, Ford ZT, Lundy HW, Miles JD, Rogers MJ, Seltmann H, Chaplin JF. Regional tests with contact and systemic tobacco sucker agents. I. Flue-cured tobacco, Tobacco Sci. 13 (1969) 113-116.
26.Mohapatra SC, Johnson WH. Development of the tobacco seeding. 1. Relationship between moisture uptake and light sensitivity during seed germination in a flue-cured variety, Tobacco Res. 4 (1978) 41-49.
27.Kucera B, Cohn MA, Metzger GL. Plant hormone interactions during seed dormancy release and germination. Seed Sci Res 15(2005) 281-307.
28.Fricker MD, Oparka KJ. Imaging techniques in plant transport: meeting review. J Exp Bot 50(1999) 1089-1100.
29.Manz B, Müller K, Kucera B, Volke F, Metzger GL. Water uptake and distribution in germinating tobacco seeds investigated in vivo by Nuclear Magnetic resonance imaging. Plant Phys 138(2005) 1538-1551.
30.Scheenen TWJ, Dusschoten DV, Jager PAD, AS HV. Quantifcation of water transport in plants with NMR imaging. J Exp Bot 51(2000) 1751-1759.
31.Weerd LVD, Claessens MMAE, Efdé C, As HV. Nuclear magnetic resonance imaging of membrane permeability changes in plants during osmotic stress. Plant Cell Envir 25(2002) 1539-1549.
32.Toor AVD, Zemah H, As HV, Bendel P, Kamenetsky R. Developmental changes and water status in tulip bulbs during storage: visualization by NMR imaging. J Exp Bot 51(2000) 1277-1287.
33.Scheenen T, Heemskerk A, Jager AD, Vergeldt F, As HV. Functional imaging of plants: a nuclear magnetic resonance study of a cucumber plant. Biophy J 82(2002) 481-492.
34.Haase A, Frahm J, Hänicke W, Matthaei D. 1H NMR chemical shift selective (CHESS) imaging. Phys Med Biol 30(1985) 341-344.
35.Hwang KP, Flask C, Lewin JS, Duerk JL. Selective missing pulse steady state free precession (MP-SSFP): inner volume and chemical shift selective imaging in a steady state sequence. J Magn Reson Imag 19(2004) 124-132.
36.Hood MN, Ho VB, Smirniotopoulos JG, Szumowski J. Chemical shift: the artifact and clinical tool revisited. Radiographics 19(1999) 357-371.
37.Gersbach PV, Reddy N. Non-invasive localization of thymol accumulation in carum copticum (apiaceae) fruits by chemical shift selective magnetic resonance imagimg. Ann Bot 90(2002) 253-257.
38.Pérez JA, Ballesteros P, Cerdán S. Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical sfift imaging of pH sensitive indicators. MAGMA 18(2005) 293-301.
39.Pope JM, Jonas D, Walker RR. Choice of soft pulse shapes for signal excitation in chemical shift selective imaging. Magn Reson Imag 13(1995) 763-766.
40.Frahm J, Haase A, Hänicke W, Matthaei D, Bomsdorf H, Helzel T. Chemical shift selective MR imaging using a whole-body magnet. Radiology 156(1985) 441-444.
41.Bottomley PA, Foster TH, Leue WM. In vivo nuclear magnetic resonance chemical shift imaging by selective irradiation. Proc Natl Acad Sci USA 81(1984) 6856-6860.
42.Freeman R. Shaped radiofrequency pulses in high resolution NMR. Prog Nucl Magn Reson Spec 32(1998) 59-106.
43.Wolf K, Toorn AVD, Hartmann K, Schreiber L, Schwab W, Haase A, Bringmann G. Metabolite monitoring in plants with double-quantum filtered chemical shift imaging. J Exp Bot 51(2000) 2109-2117.
44.Terskikh VV, Feurtado JA, Borchardt S, Giblin M, Abrams SR, Kermode AR. In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality. J Exp Bot 56(2005) 2253-2265.
45.Krisnan P, Kruger NJ, Ratcliffe RG. Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56(2004) 255-265.
46.Metzler A, Izquierdo M, Ziegler A, Köckenberger W, Komor E, Kienlin MV, Haase A, Décorps M. Plant histochemistry by correlation peak imagimg. Proc Natl Acad Sci USA 92(1995) 11912-11915.
47.Ding S, McDowell CA. High-resolution NMR spectra in solids by single-pulse excitation. J Magn Reson A 111(1994) 212-214.
48.蔡淑華. 植物解剖學. 世界書局1991.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top