|
1. Rosen, B.P., and Borbolla, M.G. A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli. Biochem Biophys Res Commun. 1984, 124:760-5. 2. San Francisco, M.J., Tisa, L.S., and Rosen, B.P. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R733. Mol Microbiol. 1989, 3:15-21. 3. Tisa, L.S., and Rosen, B.P. Molecular characterization of an anion pump. The ArsB protein is the membrance anchor for the ArsA protein. J Biol Chem. 1990, 265:190-4. 4. Godon, C., Lagniel, G., Lee, J., Buhler, J.M., Kieffer, S., Perrot, M., Boucherie, H., Toledano, M.B., and Labarre, J. The H2O2 stimulon in Saccharomyces cerevisiae. Biochemistry and Molecular Biology. 1998, 273:22480-9. 5. Higgins, V.J., Alic, N., Thorpe, G.W., Breitenbach, M., Larsson, V., and Dawes, I.W. Phenotypic analysis of gene deletant strains for sensitivity to oxidative stress. Yeast. 2002, 19: 203–214. 6. Shen, J., Hsu, C.M., Kang, B.K., Rosen, B.P., and Bhattacharjee, H. The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. BioMetals. 2003, 16: 369–378. 7. Boskovic, J., Soler-Mira, A., Garcia-Cantalejo, J.M., Ballesta, J.P., Jimenez, A., and Remacha, M. The sequence of a 16 691 bp segment of Saccharornyces cerevisiae chromosome IV identifies the D UNl, PMTl,PMTS, SRPl4 and DPRl genes, and five new open reading frames. Yeast. 1996, 12: 1377-1384. 8. 洪詩雅.(2002)國立中山大學生物科學研究所碩士論文. 9. Aherne, S.A., and O''Brien, N.M. Mechanism of protection by the flavonoids, quercetin and rutin, against tert-butylhydroperoxide- and menadione-induced DNA single strand breaks in Caco-2 cells. Free Radic Biol Med. 2000, 29:507-14. 10. Zuniga, S., Boskovic, J., Jimenez, A., Ballesta, J.P., and Remacha, M. Disruption of Six Saccharomyces cerevisiae Novel genes and phenotypic analysis of the deletants. Yeast. 1999, 15: 945–953. 11. 陳涵茵.(2004)國立中山大學生物科學研究所碩士論文. 12. Davidson, J.F., Whyte, B., Bissinger, P.H., and Schiestl, R.H. Oxidative stress is involved in heat-induced cell death in Saccharomyces cerevisiae. Microbiology. 1996, 93:5116-5121. 13. 郭雅帛.(2002)國立中山大學生物科學研究所碩士論文. 14. Estruch, F. Stress-controlled transcription factors, stress-induced genes and stress tolerance in budding yeast. FEMS Microbiol Rev. 2000, 24:469-86. 15. Espindola Ade, S., Gomes, D.S., Panek, A.D., and Eleutherio, E.C. The role of glutathione in yeast dehydration tolerance. Cryobiology. 2003, 47:236-241. 16. Moskvina, E., Schuller, C., Maurer, C.T., Mager, W.H., and Ruis, H. A search in the genome of Saccharomyces cerevisiae for genes regulated via stress response elements. Yeast. 1998, 14:1041-50. 17. Rodrigues-Pousada, C.A., Nevitt, T., Menezes, R., Azevedo, D., Pereira, J., and Amaral, C. Yeast activator proteins and stress response: an overview. FEBS Letters. 2004, 567:80-5. 18. Ruis, H., and Schuller, C. Stress signaling in yeast. Bioessays. 1995, 17:959-65. 19. Hasan, R., Leroy, C., Isnard, A.D., Labarre, J., Boy-Marcotte, E., and Toledano, M.B. The control of the yeast H2O2 response by the Msn2/4 transcription factors. Molecular Microbiology. 2002, 45:233-241. 20. Martinez-Pastor, M.T., Marchler, G., Schuller, C., Marchler-Bauer, A., Ruis, H., and Estruch, F. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). The EMBO Journal 1996, 15:2227-2235. 21. Sugiyama, K., Kawamura, A., Izawa, S., and Inoue, Y. Role of glutathione in heat-shock-induced cell death of Saccharomyces cerevisiae. Biochem. J. 2000, 352:71-8. 22. Toone, W.M., and Jones, N. AP-1 transcription factors in yeast. Oncogenes and cell proliferation. 1999, 9: 55-61. 23. Costa, V., and Moradas-Ferreira, P. Oxidative stress and signal transduction in Saccharomyces cerevisiae: insights into ageing, apoptosis and diseases. Mol Aspects Med. 2001, 22:217-46. 24. Thorpe, G.W., Fong, C.S., Alic, N., Higgins, V.J., and Dawes, I.W. Cell have distinct mechanisms to maintain protection against different reactive oxygen species:Oxidative-stress-response genes. PNAS. 2004, 101:6564-9. 25. Pereira, M.D., Herdeiro, R.S., Fernandes, P.N., Eleutherio, E.C., and Panek, A.D. Targets of oxidative stress in yeast sod mutants. Biochimica et Biophysica Acta. 2003, 1620:245– 251. 26. Lapshina, E.A., Zavodnik, I.B., Labieniec, M., Rekawiecka, K., and Bryszewska, M. Cytotoxic and genotoxic effects of tert-butyl hydroperoxide on Chinese hamster B14 cells. Mutation Research. 2005, 583:189–197. 27. Prouzet-Mauleon, V., Monribot-Espagne, C., Boucherie, H., Lagniel, G., Lopez, S., Labarre, J., Garin, J., and Lauquin, G.J. Identification in Saccharomyces cerevisiae of a new stable variant of alkyl hydroperoxide reductase 1 (Ahp1) induced by oxidative Stress. The Journal of Biological Chemistry. 2002, 277:4823-4830. 28. Cha, M.K., Choi, Y.S., Hong, S.K., Kim, W.C., No, K.T., and Kim, I.H. Nuclear thiol peroxidase as a functional alkyl-hydroperoxide reductase necessary for stationary phase growth of Saccharomyces cerevisiae. The Journal of Biological Chemistry. 2003, 278:24636-24643. 29. Trotter, E.W., and Grant, C.M. Thioredoxins are required for protection against a reductive stress in the yeast Saccharomyces cerevisiae. Molecular Microbiology. 2002, 46:869–878. 30. Toledano, M.B., Delaunay, A., Biteau, B., Spector, D., and azevedo, D. 6 Oxidative stress responses in yeast. Current Genetics. 2003, 1:241-78. 31. Jamieson, D.J. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 1998:1511-27. 32. Maris, A.F., Kern, A.L., Picada, J.N., Boccardi, F., Brendel, M., and Henriques, J.A. Glutathione, but not transcription factor Yap1, is required for carbon source-dependent resistance to oxidative stress in Saccharomyces cerevisiae. Curr Genet. 2000, 37:175-182. 33. Grant, C.M., MacIver, F.H., and Dawes, I.W. Glutathione is an essential metabolite required for resistance to oxidative stress in the yeast Saccharomyces cerevisiae. Curr Genet. 1996, 29:511–5. 34. Grant, C.M., Perrone, G., and Dawes, I.W. Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications. 1998, 253:893-8. 35. Garrido, E.O., and Grant, C.M. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Molecular Microbiology. 2002, 43:993-1003. 36. Hazell, B.W., Nevalainen, H., and Attfield, P.V. Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively. FEBS Lett. 1995, 377:457-60. 37. Attfield, P.V. Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett. 1987, 225:259-63. 38. Benaroudj, N., Lee, D.H., and Goldberg, A.L. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. J Biol Chem. 2001, 276:24261-7. 39. Bell, W., Sun, W., Hohmann, S., Wera, S., Reinders, A., De Virgilio, C., Wiemken, A., and Thevelein, J.M. Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. J Biol Chem. 1998, 273:33311-9. 40. Singer, M.A., and Lindquist, S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998, 1:639-48. 41. Pedreno, Y., Gimeno-Alcaniz, J.V., Matallana, E., and Arguelles, J.C. Response to oxidative stress caused by H2O2 in Saccharomyces cerevisiae mutants deficient in trehalase genes. Arch Microbiol. 2002, 177:494-9. 42. Zahringer, H., Thevelein, J.M., and Nwaka, S. Induction of neutral trehalase Nth1 by heat and osmotic stress is controlled by STRE elements and Msn2/Msn4 transcription factors: variations of PKA effect during stress and growth. Mol Microbiol. 2000, 35:397-406. 43. Moradas-Ferreira, P., Costa, V., Piper, P., and Mager, W. The molecular defences agsinst reactive oxygen species in yeast. Molecular Microbiology. 1996, 19:651-8. 44. Fernandes, L., Rodrigues-Pousada, C., and Struhl, K. Yap, a novel family of eight bZIP proteins in Saccharomyces cerevisiae with distinct biological functions. Molecular and Cellular Biology. 1997, 17:6982–6993. 45. Tsuzi, D., Maeta, K., Takatsume, Y., Izawa, S., and Inoue, Y. Regulation of the yeast phospholipid hydroperoxide glutathione peroxidase GPX2 by oxidative stress is mediated by Yap1 and Skn7. FEBS Letters. 2004, 565:148-154. 46. Lee, J., Godon, C., Lagniel, G., Spector, D., Garin, J., Labarre, J., and Toledano, M.B. Yap1 and Skn7 control two specialized oxidative stress response regulons in yeast. The Journal of Biological Chemistry. 1999, 274:16040-6. 47. Moye-Rowley, W.S. Regulation of the transcriptional tesponse to oxidative stress in fungi: Similarities and differences. Eukaryotic Cell. 2003, 2:381-9. 48. Lee, J., Spector, D., Godon, C., Labarre, J., and Toledano, M.B. A new antioxidant with alkyl hydroperoxide defense properties in yeast. Biol Chem. 1999, 274:4537-44. 49. Afri, M., Frimer, A.A., and Cohen, Y. Active oxygen chemistry within the liposomal bilayer. Part IV: Locating 2'',7''-dichlorofluorescein (DCF), 2'',7''-dichlorodihydrofluorescein (DCFH) and 2'',7''-dichlorodihydro fluorescein diacetate (DCFH-DA) in the lipid bilayer. Chem Phys Lipids. 2004 , 131:123-33. 50. Jakubowski, W., and Bartosz, G. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int. 2000, 24:757-60. 51. Steels, E.L., Learmonth, R.P., and Watson, K. Stress tolerance and membrane lipid unsaturation in Saccharomyces cerevisiae grown aerobically or anaerobically. Microbiology. 1994, 140:569-76. 52. Cyrne, L., Martins, L., Fernandes, L., and Marinho, H.S. Regulation of antioxidant enzymes gene expression in the yeast Saccharomyces cerevisiae during stationary phase. Free Radic Biol Med. 2003, 34:385-93. 53. Singer, M.A., and Lindquist, S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose. Trends Biotechnol. 1998, 16:460-8.
|