|
Bachovchin, W. W., Plaut, A. G., Flentke, G. R., Lynch, M. and Kettner, C. A. (1990) Inhibition of IgAl proteinases from Neisseria gonorrhoeae and Hemophilus influenzae by peptide prolyl boronic acids. J. Bio. Chem. 265:3738-3743.
Barenkamp, S. J., and St Geme, J. W. 3rd. (1996) Identification of a second family of high-molecular-weight adhesion protein expressed by non-typable Haemophilus influenzae. Mol. Microbiol. 19:1215-1223.
Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic. Acids. Res. 31:3497-500.
Farley, M. M., Stephens, D. S., Mulks, M. H., Cooper, M. D. and Bricker, J. V. (1986) Pathogenesis of IgA1 protease-producing and -nonproducing Haemophilus influenzae in human nasopharyngeal organ cultures. J. Infect. Dis. 154:752-759
Fleischmann, R.D., Adams, M.D., White, O., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd Science 269:496-512
Foxwell, A. R., Kyd, J. M., and Cripps, A. W. (1998) Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol. Mol. Biol. Rev. 62:294-308
Frandsen, E. V. G., Reinholdt, J., Kjeldsen, M. and Kilian, M. (1997) Inhibition of Prevotella and Capnocytophaga Immunoglobulin A1 proteases by human serum. Clin. Diagn. Lab. Immunol. 4:458-464.
Hajishengallis, G., Nikolova, E., and Russell, M. W. (1992) Inhibition of Streptococcus mutans sdherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (S-IgA) sntibodies to cll surface protein antigen I/II: reversal by IgAl protease cleavage. Infect. Immun. 50:5057-5064.
Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877.
Kett, K., Brandtzaeg, P., Radl, J., and Haaijman, J. J. (1986) Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J. Immunol. 136:3631-3635.
Klauser, T., Kramer, J., Otzelberger, K., Pohlner, J., and Meyer, T. F. (1993) Characterization of the Neisseria Iga beta-core. The essential unit for outer membrane targeting and extracellular protein secretion. J. Mol. Biol. 234:579-93.
Lin, L., Ayala, P., Larson, J., Mulks, M., Fukuda, M., Carlsson, S. R., Enns, C., and So, M. (1997) The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol. Microbiol. 24:1083-1094.
Lomholt, H., Poulsen, K., and Kilian, M. (1995) Comparative characterization of the iga gene encoding IgA1 protease in Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae. Mol. Microbiol. 15: 495-506.
Lorenzen, D. R., Düx, F., Wölk, U., Tsirpouchtsidis, A., Hass, G., and Meyer, T. F. (1999) Immunoglobulin A1 protease, an exoenzyme of pathogenic Neisseriae , is a potent inducer of proinflammatory cytokines. J. Exp. Med. 190:1049-1058.
Male, C. J. (1979) Immunoglobulin Al protease production by Haemophilus influenzae and Streptococcus pneumoniae. Infect. Immun. 26:254-261
Mansa, B. and Kilian, M. (1986) Retained antigen-binding activity of Fab, fragments of human monoclonal immunoglobulin Al (IgAl) cleaved by IgAl Protease. Infect. Immun. 52:171-174
Myers and Miller, CABIOS (1989) version 2.0u. Modified for EMBOSS May 1999. This application was modified for inclusion in EMBOSS by Ian Longden (il@sanger.ac.uk) Informatics Division, The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
Mistry, D., and Stockley, R. A. (2005) Molecules in focus IgA1 protease. Int. J. Biochem. Cell. Biol. 38:1244-1248.
Mulks, M. H., Kornfeld, S. J., Frangione, B., and Plaut, A. G. (1982) Relationship between the specificity of IgA proteases and serotypes in Haemophilus influenzae. J. Infect. Dis. 146:266-274.
Murphy, T. F., Bernstein, J. M., Dryja, D. M., Campagnari, A. A., and Apicella, M. A. (1987) Outer membrane protein and lipooligosaccharide analysis of paired nasopharyngeal and middle ear isolates in otitis media due to nontypable Haemophilus influenzae: pathogenetic and epidemiological observations. J. Infect. Dis. 156: 723-731
Plaut, A. G., Genco, R. J., and Tomasi, T. B., Jr. (1974a) Isolation of an enzyme from Streptococcus sanguis, which specifically cleaves IgA. J. Immunol. 113:289-291.
Plaut, A. G., Wistar Jr., R. and Capra, J. D. (1974b) Differential susceptibility of human IgA immunoglobulins to streptococcal IgA protease. J. Clin. Invest. 54:1295-1300
Plaut, A.G., Gilbert, J. V., Artenstein, M. S., and Capra, J. D. (1975) Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 190:1103-1105
Plaut, A. G. (1978) Microbial IgA proteases. N. Engl. J. Med. 298:1459-1463
Plaut, A. G. (1983) The IgA1 proteases of pathogenic bacteria. Annu. Rev. Microbiol. 37:603-622.
Pohlner, J., Halter, R., Beyreuther, K., and Meyer, T. F. (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature (London) 325:458-462
Poulsen, K., Brandt, J., Hjorth, J. P., Thψgersen, H. C., and Kilian, M. (1989) Cloning and sequencing of the immunoglobulin A1 protease gene (iga) of Haemophilus influenzae serotype b. Infect. Immun. 57:3097-3105.
Poulsen, K., Reinholdt, J., and Kilian, M. (1992) A comparative genetic study of serologically distinct Haemophilus influenzae type 1 immunoglobulin A1 proteases. J. Bacteriol. 174:2913-2921.
Qiu, J., Brackee, G. P., and Plaut, A. G. (1996) Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by a comparative study of ape serum IgAs as substrates. Infect. Immun. 64: 933-937. Rao, V. K., Krasan, G. P., Hendrixson, D. R., and St Geme, J. W. 3rd. (1999) Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae. FEMS Microbiol. Rev. 23:99-129.
Reinholdt, J. and Kilian, M. (1991) Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases. Infect. Immun. 59: 2219-2221.
Rozen, S. and Skaletsky, H. J. (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386
St. Geme, J. W. 3rd., Stanley, F., and Barenkampu, S. J. (1993) High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc. Natl. Acad. Sci. USA 90: 2875-2879
St Geme, J. W. 3rd., de la Morena, M. L., and Flkow, S. (1994) A Haemophilus influenzae IgA protease-like protein promotes intimate interaction with human epithelial cells. Mol. Microbiol. 14:217-223
St Geme, J. W. 3rd. (2002) Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell. Microbiol. 4:191-200
Tsirpouchtsidis, A., Hurwitz, R., Brinkmann, V., Meyer, T. F. and Hass, G. (2002) Neisserial immunoglobulin A1 protease induces specific T-cell responses in humans. Infect. Immun. 70:335-344
Vitovski, S., Read, R. C., and Sayers, J. R. (1999) Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J. 13:331-337
Vitovski, S., Dunkin, K. T., Howard, A. J. and Sayers, J. R. (2002) Nontypeable Haemophilus influenzae in carriage and disease: a difference in IgA1 protease activity levels. J. Am. Med. Assoc. 287:1699-705.
Weiser, J. N., Bae, D., Fasching, C., Scamurra, R. W., Ratner, A. J., and Janoff, E. N. (2003) Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100:4215-4220.
|