跳到主要內容

臺灣博碩士論文加值系統

(44.192.95.161) 您好!臺灣時間:2024/10/12 12:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張蕙萱
研究生(外文):Hui-hsuan Chang
論文名稱:非分型流行性感冒嗜血桿菌IgA1蛋白脢分子結構與功能的研究
論文名稱(外文):Molecular Characterization of IgA1 protease from Non-typableHaemophilus influenzae
指導教授:何世屏
指導教授(外文):Shiping He
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:65
中文關鍵詞:嗜血桿菌分子結構非分型
外文關鍵詞:non-typableIgA1 proteaseadherence assayhaemophilus influenzae
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
免疫球蛋白A1 是黏膜層上含量最多的抗體,同時也是人體阻止微生
物入侵的第一道防線。然而有些致病菌,例如腦膜炎雙球菌、流行性
感冒嗜血桿菌,分泌IgA1 蛋白脢水解免疫球蛋白A1,破壞抗體的結
構及其原有的生物功能。因此在過去的研究中,IgA 蛋白脢被認為是
可能的致病因子。在此篇論文中,分別從非分型流行感冒嗜血桿菌及
腦膜炎雙球菌克隆IgA1 蛋白脢之基因並且完成全長的定序,和其它
已發表的IgA1 蛋白脢序列進行比對之後顯示有極高的相似度。同時
為了更加了解IgA1 蛋白脢對於非分型流行性感冒嗜血桿菌在宿主細
胞的黏附、移生及致病性有什麼影響,純化大量的重組IgA1 蛋白脢,
以A549 細胞株為實驗模組,利用adherence assay 探討IgA1 蛋白脢
是否能助於流行性感冒嗜血桿菌貼附至上皮細胞。實驗結果顯示,在
適當IgA1 蛋白脢作用濃度下有助於流行性感冒嗜血桿菌貼附至宿主
上皮細胞,但是其效應會因不同品系(strain)而改變。
IgA1 (immunoglobulin A1), a predominant immunoglobulin, is at the first defense line against microbial pathogens infection and invasion, to neutralize pathogenic antigens. Some bacterial pathogens, such as Neisseria meningitidis and Haemophilus influenzae, however, secrete site-specific IgA1 proteases to counteract with the human defense system. The protease is capable of cleaving at the hinge region of immunoglobulin A1 to destroy the structure and function of human IgA1, impairing the role of the immunoglobulin from the host defense. The protease has therefore been implicated as a putative virulence factor that contributes to bacterial colonization, but bacterial isolates from patients with invasive diseases contain both positive and negative IgA1 proteases. To clarify the role of IgA1 protease in bacterial infection, this project is designed to reveal the molecular mechanism of the protease in bacterial infection and colonization. To do this, iga genes encoding non-typable H. influenzae type 1, type 3 and Neisseria meningitidis type 3 IgA1 proteases were isolated, sequenced and then expressed in IgA1 protease-negative E. coli BL21 (DE3). The recombinant proteases have been purified to homogeneity using ion exchange chromatography. Comparison of the deduced amino acid sequences from non-typable H. influenzae IgA1 proteases with other published H. influenzae IgA1 protease revealed a high degree of homology. Sequence analysis indicates that both type 1 and type 3 non-typable H. influenzae IgA1 proteases lack α-protein in comparison with the iga from N. meningitidis. The role of IgA1 protease in relation to deposition and invasion has also been evaluated in human lung carcinoma cell (A549) model. The results suggest that the IgA1 protease plays a role in the adherence of H. influenzae on epithelial cell surface though the best effectiveness varies upon different pathogenic bacterial strains at different concentrations.
Contents
Abstract •••••••••••••••••••••••••••• 1
摘要••••••••••••••••••••••••••••• 3
Chapter 1 Introduction•••••••••••••••••••••• 4
1.1 Role of IgA1 protease••••••••••••••••••••• 4
1.2 Cleavage sites of IgA1 protease••••••••••••••••• 6
1.3 Structure of IgA1 proteases••••••••••••••••••• 6
1.4 Non-typable Haemophilus influenzae (NTHi) •••••••••••7
Chapter 2 Material and Methods••••••••••••••••• 11
2.1 Bacterial strains, plasmids, and growth conditions••••••••• 11
2.2 Preparation of genomic DNA•••••••••••••••••• 13
2.3 Cloning of non-typable H. influenzae and N. meningitidis iga gene••• 13
2.4 Preparation and transformation of competent E. coli cells••••••• 16
2.5 DNA sequencing of iga gene and sequence analysis••••••••• 17
2.6 Expression and purification of recombinant IgA1 protease•••••• 18
2.7 Purification of human IgG••••••••••••••••••• 18
2.8 IgA1 protease activity assay•••••••••••••••••• 19
2.9 Adherence assay••••••••••••••••••••••• 20
Chapter 3 Results•••••••••••••••••••••••• 22
3.1 Polymerase chain reaction amplification of non-typable H. influenzae and N. meningitidis iga gene••••••••••••••••••••• 22
3.2 Cloning of non-typable H. influenzae and N. meningitidis iga gene•• 22
3.3 DNA sequencing of iga gene and sequence analysis•••••••• 23
3.4 Expression and purification of recombinant IgA1 protease•••••• 26
3.5 Purification of human IgG••••••••••••••••••• 27
3.6 IgA1 protease activity assay•••••••••••••••••• 28
3.7 Adherence assay••••••••••••••••••••••• 28
Chapter 4 Discussion•••••••••••••••••••••• 32
4.1 DNA sequencing of iga gene and sequence analysis•••••••• 32
4.2 The ability of IgA1 protease on the enhanced-adherence of H. influenzae••••••••••••••••••••••••••• 33
4.3 The effect of human IgA1 or IgA1 protease on the adherence of H. influenzae••••••••••••••••••••••••••• 34
4.4 The effect of serum IgG or IgA1 protease on the adherence of H. influenzae••••••••••••••••••••••••••• 34
References•••••••••••••••••••••••••• 36











List of Tables
Table 1. Bacterial strains, and plasmids••••••••••••••• 12
Table 2. Design of PCR primers for amplification of iga gene•••••• 14

Figures and legends
Figure 1 Amino acid sequence of the hinge region of IgA1 and IgA2 differ mainly in the hinge region. ••••••••••••••••••••40
Figure 2 Peptide bonds in the human IgA heavy chain cleaved by known microbial IgA proteases. •••••••••••••••••••••41
Figure 3 Mechanism of processing and secretion of IgA1 protease. •••• 42
Figure 4 Polymerase chain reaction amplification of non-typable H. influenzae and N. meningitidis430 iga gene•••••••••••••••••• 43
Figure 5 Cloning of iga gene to the intermediate vector, pGEM-T easy Vector•••••••••••••••••••••••••••• 44
Figure 6 Sub- cloning of iga gene to the expression vector pTrcHisA••• 45
Figure 7 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of purified recombinant IgA1 protease•••••••••••••••••••• 46
Figure 8 IgA1 protease activity examined by 12% SDS-polyacrylamide gel electrophoresis••••••••••••••••••••••••• 47
Figure 9 IgA1 protease activity examined by 12% SDS-polyacrylamide gel electrophoresis••••••••••••••••••••••••• 48
Figure 10 Comparision of the deduced amino acid sequences of the NTHi500 IgA1 protease domain with other published H. influenzae IgA1 protease from strain Rd KW20 and HK61•••••••••••••••••••• 49
Figure 11 Comparison of NTHi500 iga beta domain with other H. influenzae type 1 IgA1 protease••••••••••••••••••••••• 50
Figure 12 The deduced amino acid sequences of the NTHi465 protease domain••••••••••••••••••••••••••••51
Figure 13 Comparison of NTHi465 IgA1 protease beta domain with other H. influenzae type 1 IgA1 protease•••••••••••••••••• 52
Figure 14 Neither NTHi465 nor NTHi500 IgA1 protease contain the α-protein••••••••••••••••••••••••••• 53
Figure 15 Effect of the recombinant IgA1 protease from NTHi500 on the relative adherence (ratio of the percentage of adherence with and without IgA1 protease) of four strains of H. influenzae••••••••••••••• 54
Figure 16 Effect of recombinant IgA1 protease or human antibody on the relative adherence (percentage of adherence compared with inoculum) of NTHi500••••••••••••••••••••••••••• 55
Figure 17 Effect of recombinant IgA1 protease or human antibody on the relative adherence (percentage of adherence compared with inoculum) of NTHi558••••••••••••••••••••••••••• 56
Figure 18 Effect of recombinant IgA1 protease or human antibody on the relative adherence (percentage of adherence compared with inoculum) of THi46679••••••••••••••••••••••••••• 57
Figure 19 Effect of recombinant IgA1 protease or human antibody on the relative adherence (percentage of adherence compared with inoculum) of THi 46644•••••••••••••••••••••••••••• 58
Bachovchin, W. W., Plaut, A. G., Flentke, G. R., Lynch, M. and Kettner, C. A. (1990) Inhibition of IgAl proteinases from Neisseria gonorrhoeae and Hemophilus influenzae by peptide prolyl boronic acids. J. Bio. Chem. 265:3738-3743.

Barenkamp, S. J., and St Geme, J. W. 3rd. (1996) Identification of a second family of high-molecular-weight adhesion protein expressed by non-typable Haemophilus influenzae. Mol. Microbiol. 19:1215-1223.

Chenna, R., Sugawara, H., Koike, T., Lopez, R., Gibson, T. J., Higgins, D. G., and Thompson, J. D. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic. Acids. Res. 31:3497-500.

Farley, M. M., Stephens, D. S., Mulks, M. H., Cooper, M. D. and Bricker, J. V. (1986) Pathogenesis of IgA1 protease-producing and -nonproducing Haemophilus influenzae in human nasopharyngeal organ cultures. J. Infect. Dis. 154:752-759

Fleischmann, R.D., Adams, M.D., White, O., et al. (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd Science 269:496-512

Foxwell, A. R., Kyd, J. M., and Cripps, A. W. (1998) Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol. Mol. Biol. Rev. 62:294-308

Frandsen, E. V. G., Reinholdt, J., Kjeldsen, M. and Kilian, M. (1997) Inhibition of Prevotella and Capnocytophaga Immunoglobulin A1 proteases by human serum. Clin. Diagn. Lab. Immunol. 4:458-464.

Hajishengallis, G., Nikolova, E., and Russell, M. W. (1992) Inhibition of Streptococcus mutans sdherence to saliva-coated hydroxyapatite by human secretory immunoglobulin A (S-IgA) sntibodies to cll surface protein antigen I/II: reversal by IgAl protease cleavage. Infect. Immun. 50:5057-5064.

Huang, X. and Madan, A. (1999) CAP3: A DNA sequence assembly program. Genome Res. 9: 868-877.

Kett, K., Brandtzaeg, P., Radl, J., and Haaijman, J. J. (1986) Different subclass distribution of IgA-producing cells in human lymphoid organs and various secretory tissues. J. Immunol. 136:3631-3635.

Klauser, T., Kramer, J., Otzelberger, K., Pohlner, J., and Meyer, T. F. (1993) Characterization of the Neisseria Iga beta-core. The essential unit for outer membrane targeting and extracellular protein secretion. J. Mol. Biol. 234:579-93.

Lin, L., Ayala, P., Larson, J., Mulks, M., Fukuda, M., Carlsson, S. R., Enns, C., and So, M. (1997) The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol. Microbiol. 24:1083-1094.

Lomholt, H., Poulsen, K., and Kilian, M. (1995) Comparative characterization of the iga gene encoding IgA1 protease in Neisseria meningitidis, Neisseria gonorrhoeae and Haemophilus influenzae. Mol. Microbiol. 15: 495-506.

Lorenzen, D. R., Düx, F., Wölk, U., Tsirpouchtsidis, A., Hass, G., and Meyer, T. F. (1999) Immunoglobulin A1 protease, an exoenzyme of pathogenic Neisseriae , is a potent inducer of proinflammatory cytokines. J. Exp. Med. 190:1049-1058.

Male, C. J. (1979) Immunoglobulin Al protease production by Haemophilus influenzae and Streptococcus pneumoniae. Infect. Immun. 26:254-261

Mansa, B. and Kilian, M. (1986) Retained antigen-binding activity of Fab, fragments of human monoclonal immunoglobulin Al (IgAl) cleaved by IgAl Protease. Infect. Immun. 52:171-174

Myers and Miller, CABIOS (1989) version 2.0u. Modified for EMBOSS May 1999. This application was modified for inclusion in EMBOSS by Ian Longden (il@sanger.ac.uk) Informatics Division, The Sanger Centre, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK

Mistry, D., and Stockley, R. A. (2005) Molecules in focus IgA1 protease. Int. J. Biochem. Cell. Biol. 38:1244-1248.

Mulks, M. H., Kornfeld, S. J., Frangione, B., and Plaut, A. G. (1982) Relationship between the specificity of IgA proteases and serotypes in Haemophilus influenzae. J. Infect. Dis. 146:266-274.


Murphy, T. F., Bernstein, J. M., Dryja, D. M., Campagnari, A. A., and Apicella, M. A. (1987) Outer membrane protein and lipooligosaccharide analysis of paired nasopharyngeal and middle ear isolates in otitis media due to nontypable Haemophilus influenzae: pathogenetic and epidemiological observations. J. Infect. Dis. 156: 723-731

Plaut, A. G., Genco, R. J., and Tomasi, T. B., Jr. (1974a) Isolation of an enzyme from Streptococcus sanguis, which specifically cleaves IgA. J. Immunol. 113:289-291.

Plaut, A. G., Wistar Jr., R. and Capra, J. D. (1974b) Differential susceptibility of human IgA immunoglobulins to streptococcal IgA protease. J. Clin. Invest. 54:1295-1300

Plaut, A.G., Gilbert, J. V., Artenstein, M. S., and Capra, J. D. (1975) Neisseria gonorrhoeae and Neisseria meningitidis: extracellular enzyme cleaves human immunoglobulin A. Science 190:1103-1105

Plaut, A. G. (1978) Microbial IgA proteases. N. Engl. J. Med. 298:1459-1463

Plaut, A. G. (1983) The IgA1 proteases of pathogenic bacteria. Annu. Rev. Microbiol. 37:603-622.

Pohlner, J., Halter, R., Beyreuther, K., and Meyer, T. F. (1987) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature (London) 325:458-462

Poulsen, K., Brandt, J., Hjorth, J. P., Thψgersen, H. C., and Kilian, M. (1989) Cloning and sequencing of the immunoglobulin A1 protease gene (iga) of Haemophilus influenzae serotype b. Infect. Immun. 57:3097-3105.

Poulsen, K., Reinholdt, J., and Kilian, M. (1992) A comparative genetic study of serologically distinct Haemophilus influenzae type 1 immunoglobulin A1 proteases. J. Bacteriol. 174:2913-2921.

Qiu, J., Brackee, G. P., and Plaut, A. G. (1996) Analysis of the specificity of bacterial immunoglobulin A (IgA) proteases by a comparative study of ape serum IgAs as substrates. Infect. Immun. 64: 933-937.
Rao, V. K., Krasan, G. P., Hendrixson, D. R., and St Geme, J. W. 3rd. (1999) Molecular determinants of the pathogenesis of disease due to non-typable Haemophilus influenzae. FEMS Microbiol. Rev. 23:99-129.

Reinholdt, J. and Kilian, M. (1991) Lack of cleavage of immunoglobulin A (IgA) from rhesus monkeys by bacterial IgA1 proteases. Infect. Immun. 59: 2219-2221.

Rozen, S. and Skaletsky, H. J. (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386

St. Geme, J. W. 3rd., Stanley, F., and Barenkampu, S. J. (1993) High-molecular-weight proteins of nontypable Haemophilus influenzae mediate attachment to human epithelial cells. Proc. Natl. Acad. Sci. USA 90: 2875-2879

St Geme, J. W. 3rd., de la Morena, M. L., and Flkow, S. (1994) A Haemophilus influenzae IgA protease-like protein promotes intimate interaction with human epithelial cells. Mol. Microbiol. 14:217-223

St Geme, J. W. 3rd. (2002) Molecular and cellular determinants of non-typeable Haemophilus influenzae adherence and invasion. Cell. Microbiol. 4:191-200

Tsirpouchtsidis, A., Hurwitz, R., Brinkmann, V., Meyer, T. F. and Hass, G. (2002) Neisserial immunoglobulin A1 protease induces specific T-cell responses in humans. Infect. Immun. 70:335-344

Vitovski, S., Read, R. C., and Sayers, J. R. (1999) Invasive isolates of Neisseria meningitidis possess enhanced immunoglobulin A1 protease activity compared to colonizing strains. FASEB J. 13:331-337

Vitovski, S., Dunkin, K. T., Howard, A. J. and Sayers, J. R. (2002) Nontypeable Haemophilus influenzae in carriage and disease: a difference in IgA1 protease activity levels. J. Am. Med. Assoc. 287:1699-705.

Weiser, J. N., Bae, D., Fasching, C., Scamurra, R. W., Ratner, A. J., and Janoff, E. N. (2003) Antibody-enhanced pneumococcal adherence requires IgA1 protease. Proc. Natl. Acad. Sci. USA 100:4215-4220.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top