跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/02 22:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張至剛
研究生(外文):Chih-kang Chang
論文名稱:釀酒酵母ARR4蛋白之ATP水解活性與結構關係的探討
論文名稱(外文):Characterization of ARR4 ATPase activity and structural states in Saccharomyces cerevisiae
指導教授:許清玫
指導教授(外文):Ching-mei Hsu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:39
中文關鍵詞:雙聚體釀酒酵母ATP水解活性
外文關鍵詞:ARR4Saccharomyces cerevisiaeATPase activityDimer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:320
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
在酵母菌Saccharomyces cerevisiae中的ARR4蛋白與細菌ArsA為同源蛋白。生長曲線的實驗中突變蛋白ARR4[G30R]展現negative dominance的現象,表示ARR4蛋白在生物體內可形成雙聚體的結構來行使它的功能。在非變性膠體電泳顯示純化的ARR4蛋白呈現單體、雙聚體或是多聚體的構形狀態。另外以chemical cross-linkers可以確認在非變性膠體上的ARR4雙聚體的所在位置。重金屬離子Co2+, Sb3+, As3+,As5+對ARR4的ATPase活性與雙聚體的形成皆無影響。ARR4水解ATP的程度以測量磷酸根釋放與NADH吸光值變化,分別為50-70與100-120nmol/min/mg低的活性,當ATP與Mg2+為2:1比例時有最大活性。突變蛋白ARR4[G30R]大約只有ARR4蛋白一半的ATP水解速度。當ARR4蛋白分別地加入ATP或Mg2+,在非變性膠體上單體與雙聚體比例無變化,而ARR4[G30R]蛋白則不受任處理何影響。但同時加入ATP與Mg2+時,ARR4蛋白雙聚體的形成就有明顯增加的趨勢。以不同的molar比例(1:1, 1:2及1:4)混合ARR4與突變蛋白ARR4[G30R]但維持相同的蛋白濃度,發現ATPase活性與ARR4的含量成線性關係,因此推測ARR4胺基酸結合位在雙聚體中可以獨立地執行水解ATP作用。另外在非變性膠體上ARR4與ARR4[G30R]形成雙聚體的程度也與ARR4蛋白的含量成比例,而ATP與Mg2+同時與ARR4作用會使ARR4構形改變有利雙聚體的形成。
The ARR4 gene from Saccharomyces cerevisiae was highly homological with E. coli arsA. The defective nucleotide-binding domain of ARR4[G30R] exhibited negative dominance from the growth curve experiment, showing that ARR4 protein might act as a dimer in vivo. On the nonreducing gel, the purified 40 kDa ARR4 presented as monomer, dimer and oligomer conformational states. Besides, the chemical cross-linking experiments confirmed the positional size of dimeric ARR4. The metal ions of Co2+, Sb3+, As3+ and As5+ have not effect on the ATPase activity and ARR4 oligomerization. ARR4 exhibit a low level of Mg2+-ATPase activity in the range of 50-70 and 100-120 nmol/min/mg respectively as estimated by phosphate released and NADH-coupled assay. The maximal activity was obtained at a ratio of ATP:Mg2+ of 2:1 and the ATPase activity of ARR4[G30R] was about 50% of that of the ARR4 from both ATPase assays. In the presence of ATP or Mg2+, ARR4 has similar ratios of dimer and monomer. When incubated with Mg2+-ATP, ARR4 tended to form more dimer than with ATP and Mg2+ individually. ARR4[G30R] exhibited less dimer formation. Mixing ARR4 and ARR4[G30R] at a constant total protein concentration with different molar ratios (1:1, 1:2 and 1:4), a near linear relationship of activity versus amount of the ARR4 protein was observed. This observation suggests that ATP hydrolysis takes places in one ATP binding site independent of the other site of NBD. The proportional ATPase activities were consistent with the ratios of ARR4-ARR4[G30R] dimerization on the nonreducing gels. In conclusion, the conformational changes induced by Mg2+-ATP is related to the dimerization of ARR4 and both its NBDs would hydrolyze ATP independently.
Introduction--------------------------------------------------------------------------------------1
Materials and Methods------------------------------------------------------------------------4
Results-------------------------------------------------------------------------------------------11
Discussion---------------------------------------------------------------------------------------15
Tables and Figures----------------------------------------------------------------------------20
References--------------------------------------------------------------------------------------32
Al-Shawi, M. K. and Senior, A. E. (1993). Characterization of the adenosine triphosphatase activity of Chinese hamster P-glycoprotein. J Biol Chem 268, 4197-206.
Al-Shawi, M. K., Urbatsch, I. L. and Senior, A. E. (1994). Covalent inhibitors of P-glycoprotein ATPase activity. J Biol Chem 269, 8986-92.
Azzaria, M., Schurr, E. and Gros, P. (1989). Discrete mutations introduced in the predicted nucleotide-binding sites of the mdr1 gene abolish its ability to confer multidrug resistance. Mol Cell Biol 9, 5289-97.
Bhattacharjee, H., Zhou, T., Li, J., Gatti, D. L., Walmsley, A. R. and Rosen, B. P. (2000). Structure-function relationships in an anion-translocating ATPase. Biochem Soc Trans 28, 520-6.
Cashikar, A. G., Schirmer, E. C., Hattendorf, D. A., Glover, J. R., Ramakrishnan, M. S., Ware, D. M. and Lindquist, S. L. (2002). Defining a pathway of communication from the C-terminal peptide binding domain to the N-terminal ATPase domain in a AAA protein. Mol Cell 9, 751-60.
Davidson, A. L. (2002). Mechanism of coupling of transport to hydrolysis in bacterial ATP-binding cassette transporters. J Bacteriol 184, 1225-33.
Davidson, A. L., Laghaeian, S. S. and Mannering, D. E. (1996). The maltose transport system of Escherichia coli displays positive cooperativity in ATP hydrolysis. J Biol Chem 271, 4858-63.
Davidson, A. L. and Sharma, S. (1997). Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli. J Bacteriol 179, 5458-64.
Fetsch, E. E. and Davidson, A. L. (2002). Vanadate-catalyzed photocleavage of the signature motif of an ATP-binding cassette (ABC) transporter. Proc Natl Acad Sci U S A 99, 9685-90.
Gill, S. C. and von Hippel, P. H. (1989). Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem 182, 319-26.
Holland, I. B. and Blight, M. A. (1999). ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans. J Mol Biol 293, 381-99.
Hsu, C. M. and Rosen, B. P. (1989). Characterization of the catalytic subunit of an anion pump. J Biol Chem 264, 17349-54.
Hung, L. W., Wang, I. X., Nikaido, K., Liu, P. Q., Ames, G. F. and Kim, S. H. (1998). Crystal structure of the ATP-binding subunit of an ABC transporter. Nature 396, 703-7.
Janas, E., Hofacker, M., Chen, M., Gompf, S., van der Does, C. and Tampe, R. (2003). The ATP hydrolysis cycle of the nucleotide-binding domain of the mitochondrial ATP-binding cassette transporter Mdl1p. J Biol Chem 278, 26862-9.
Karkaria, C. E., Chen, C. M. and Rosen, B. P. (1990). Mutagenesis of a nucleotide-binding site of an anion-translocating ATPase. J Biol Chem 265, 7832-6.
Kaur, P. (1999). The anion-stimulated ATPase ArsA shows unisite and multisite catalytic activity. J Biol Chem 274, 25849-54.
Kaur, P. and Rosen, B. P. (1992). Mutagenesis of the C-terminal nucleotide-binding site of an anion-translocating ATPase. J Biol Chem 267, 19272-7.
Kiianitsa, K., Solinger, J. A. and Heyer, W. D. (2003). NADH-coupled microplate photometric assay for kinetic studies of ATP-hydrolyzing enzymes with low and high specific activities. Anal Biochem 321, 266-71.
Lanzetta, P. A., Alvarez, L. J., Reinach, P. S. and Candia, O. A. (1979). An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100, 95-7.
Li, J. and Rosen, B. P. (2000). The linker peptide of the ArsA ATPase. Mol Microbiol 35, 361-7.
Liu, C. E., Liu, P. Q. and Ames, G. F. (1997). Characterization of the adenosine triphosphatase activity of the periplasmic histidine permease, a traffic ATPase (ABC transporter). J Biol Chem 272, 21883-91.
Loo, T. W. and Clarke, D. M. (1995). Rapid purification of human P-glycoprotein mutants expressed transiently in HEK 293 cells by nickel-chelate chromatography and characterization of their drug-stimulated ATPase activities. J Biol Chem 270, 21449-52.
Moody, J. E., Millen, L., Binns, D., Hunt, J. F. and Thomas, P. J. (2002). Cooperative, ATP-dependent association of the nucleotide binding cassettes during the catalytic cycle of ATP-binding cassette transporters. J Biol Chem 277, 21111-4.
Morbach, S., Tebbe, S. and Schneider, E. (1993). The ATP-binding cassette (ABC) transporter for maltose/maltodextrins of Salmonella typhimurium. Characterization of the ATPase activity associated with the purified MalK subunit. J Biol Chem 268, 18617-21.
Nikaido, K. and Ames, G. F. (1999). One intact ATP-binding subunit is sufficient to support ATP hydrolysis and translocation in an ABC transporter, the histidine permease. J Biol Chem 274, 26727-35.
Parsell, D. A., Kowal, A. S. and Lindquist, S. (1994). Saccharomyces cerevisiae Hsp104 protein. Purification and characterization of ATP-induced structural changes. J Biol Chem 269, 4480-7.
Rosen, B. P., Bhattacharjee, H., Zhou, T. and Walmsley, A. R. (1999). Mechanism of the ArsA ATPase. Biochim Biophys Acta 1461, 207-15.
Rothstein, R. J. (1983). One-step gene disruption in yeast. Methods Enzymol 101, 202-11.
Scheer, J. M. and Ryan, C. A. (2001). A method for the quantitative recovery of proteins from polyacrylamide gels. Anal Biochem 298, 130-2.
Schirmer, E. C., Queitsch, C., Kowal, A. S., Parsell, D. A. and Lindquist, S. (1998). The ATPase activity of Hsp104, effects of environmental conditions and mutations. J Biol Chem 273, 15546-52.
Schirmer, E. C., Ware, D. M., Queitsch, C., Kowal, A. S. and Lindquist, S. L. (2001). Subunit interactions influence the biochemical and biological properties of Hsp104. Proc Natl Acad Sci U S A 98, 914-9.
Shen, J., Hsu, C. M., Kang, B. K., Rosen, B. P. and Bhattacharjee, H. (2003). The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance. Biometals 16, 369-78.
Shyamala, V., Baichwal, V., Beall, E. and Ames, G. F. (1991). Structure-function analysis of the histidine permease and comparison with cystic fibrosis mutations. J Biol Chem 266, 18714-9.
Smith, P. C., Karpowich, N., Millen, L., Moody, J. E., Rosen, J., Thomas, P. J. and Hunt, J. F. (2002). ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer. Mol Cell 10, 139-49.
Walker, J. E., Saraste, M., Runswick, M. J. and Gay, N. J. (1982). Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. Embo J 1, 945-51.
Walmsley, A. R., Zhou, T., Borges-Walmsley, M. I. and Rosen, B. P. (2001). Antimonite regulation of the ATPase activity of ArsA, the catalytic subunit of the arsenical pump. Biochem J 360, 589-97.
Yuan, Y. R., Blecker, S., Martsinkevich, O., Millen, L., Thomas, P. J. and Hunt, J. F. (2001). The crystal structure of the MJ0796 ATP-binding cassette. Implications for the structural consequences of ATP hydrolysis in the active site of an ABC transporter. J Biol Chem 276, 32313-21.
Zhou, T., Liu, S. and Rosen, B. P. (1995). Interaction of substrate and effector binding sites in the ArsA ATPase. Biochemistry 34, 13622-6.
Zhou, T., Radaev, S., Rosen, B. P. and Gatti, D. L. (2000). Structure of the ArsA ATPase: the catalytic subunit of a heavy metal resistance pump. Embo J 19, 4838-45.
Zhou, T. and Rosen, B. P. (1997). Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J Biol Chem 272, 19731-7.
Zhou, T. and Rosen, B. P. (1999). Asp45 is a Mg2+ ligand in the ArsA ATPase. J Biol Chem 274, 13854-8.
Zuniga, S., Boskovic, J., Jimenez, A., Ballesta, J. P. and Remacha, M. (1999). Disruption of six Saccharomyces cerevisiae novel genes and phenotypic analysis of the deletants. Yeast 15, 945-53.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文