跳到主要內容

臺灣博碩士論文加值系統

(54.173.214.227) 您好!臺灣時間:2022/01/25 12:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張雅雯
研究生(外文):Ya-Wen Chang
論文名稱:非分型的流行性感冒嗜血桿菌(NTHi)已成為引起侵襲性疾病的優勢微生物菌種
論文名稱(外文):Non-typable Haemophilus influenzae (NTHi) has become a dominant microbial strain causing invasive diseases
指導教授:何世屏
指導教授(外文):Shiping He
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物科學系研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:61
中文關鍵詞:流行性嗜血桿菌侵襲性疾病抗藥性
外文關鍵詞:Hemophilus influenzaeβ-lactamaseIgA1 protease
相關次數:
  • 被引用被引用:0
  • 點閱點閱:425
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流行性嗜血桿菌(Hemophilus influenzae;Hi)主要感染人的上呼吸道,其中絕大多數是無莢膜的。所導致的人類疾病可分為原發性外源性感染和繼發性內源性感染兩類。原發性感染多為強毒株引起的急性化膿性感染,常見的有腦膜炎、鼻咽炎、急性氣管炎、化膿性關節炎和心包炎等。繼發性感染常發生在流感、麻疹、百日咳及肺結核等疾病之後,如支氣管肺炎和中耳炎等。病人主要病理反應為以體液免疫為主,病後有特異性抗體的產生,能增強吞噬作用及補體的溶菌作用。Hi 可產生內毒素,在致病過程中有重要作用。無外毒素者,其多糖莢膜有抗吞噬作用,可產生 lgA1 蛋白酶,水解感染區域的分泌型 lgA1 而使細菌在感染部位形成菌落。本研究的主要目的是探討並確定感染之流行性嗜血桿菌所引起侵襲性疾病在抗藥性與 IgA1 蛋白酶活性間的基因型 (genotype) 之關係。本研究的主要方法及流程包括收集臨床感染病患的血液、膿液、痰液、氣管沖洗液和喉頭培養之檢體,以巧克力培養基進行分離培養並鑑定出各種菌種;應用 PCR 對分離出的 Hi 進行血清及基因分型,並研究其 lgA1 蛋白酶的活性與產生 β 內醯胺酶(beta-lactamase) 所引起的病原菌抗性的酶學及基因學之間的關係等。研究結果顯示,此 45 位侵襲性流行性嗜血桿菌感染病患的臨床症狀包括肺炎、鼻竇炎、菌血症、支氣管炎、慢性阻塞性肺病、結膜炎或中耳炎等疾病,病患年齡介於 1-71 歲之間。在所有分離的 45 位患者的檢體中,無分型嗜血桿菌(non-typable H. influenzae; NTHi) 在引起侵襲性疾病過程中已成為優勢菌種,皆包含 iga 基因,但只有 80% 具有 IgA1 蛋白酶之活性,這是由於 iga 基因中常見的無意義突變之所致。在 Hi 感染的菌種中有 84% 優勢種群是 NTHi 。約 76% 的 NTHi 和 85% 的可分型嗜血桿菌(typable H. influenzae;THi)具有活性的 IgA1 蛋白酶。 PFGE 基因分析顯示這 45 株 Hi 分離菌株皆不是同源性的基因型。具有活性的 IgA1 蛋白酶的表現型(Phenotypes) 與這 45 株的 Hi 的抗藥性顯示彼此無密切關係。本報告向醫界警告:NTHi 在引起侵襲性疾病中已成為優勢的菌株。這些菌株的抗藥性與具活性的 IgA1 蛋白酶基因是獨立的,但與 beta-lactamase 的存在呈極顯的關係。
Hemophilus influenzae (Hi) has been an important strain in clinical examination, but it is not clear about its subtype, non-typable Hi, in causing invasive diseases after years of application of vaccines against typable Hi. Thus, the study is to determine the major infected bacterium causing invasive diseases and investigate the genotype relationship between antibiotic resistance and active IgA1 protease. Practical approaches of the study include clone each microorganism from infected blood, pus, sputum, bronchial washing and thorax samples of patients with invasive diseases. Each of the organisms was assayed for IgA1 protease activity, the type of the enzyme and antibiotic resistance. Forty-five patients aged 1 to over 71 with invasive diseases of diagnosed pneumonia, sinusitis, bacteremia, bronchitis, chronic obstructive of pulmonary diseases (COPD), conjunctivitis or otitis media, were analyzed, and all the 45 Hi isolates contain iga gene but only 80% contain active IgA1 protease. Mutations to silence iga gene are common in Hi isolates. The dominant population of infected bacterium is Hi, 84% of which are non-typable (NTHi). About 76% of NTHi and 85% of typable Hi (THi) contained active IgA1 protease. PFGE analysis showed that none of the 45 Hi isolates had identical genome. Phenotypes of active IgA1 protease and antibiotic resistance of the 45 Hi isolates showed no close relations each other. This study clearly demonstrated that NTHi has become a dominant strain in causing invasive diseases. Antibiotic resistance and active IgA1 protease are two essential but independent phenotypes for NTHi to infect and colonize. Antibiotic resistance of NTHi is dependent on the presence of beta-lactamase.
Chapter 1 Introduction.................................. 1
Chapter 2 Materials and methods ........................ 15
Chapter 3 Results....................................... 20
Chapter 4 Discussion ................................... 22
Chapter 5 Conclusion ................................... 26
List of References ..................................... 28
List of Figures ........................................ 39
List of Tables.......................................... 47
Adams WG, Dever KA, Cochi SL, Plikaytis BD, Zell ER, Broome CV, Wenger JD. (1993) Decline of childhood Haemophilus influenzae type b (Hib) disease in the Hib vaccine era. JAMA 269:221-226.
Arzese A, Botta GA. (1995). Comparative studies of the IgA1 protease genes from Haemophilus influenzae, Neisseria gonorrhoeae, and Prevotella melaninogenica. Clinical Infectious Diseases 20 (Suppl. 2):S169-S171.
Bachovchin WW, Plaut AG, Flentke GR, Lynch M, Kettner CA. (1990) Inhibition of IgA1 proteinases from Neisseria gonorrhoeae and Haemophilus influenzae by peptide prolyl boronic acids. J Biol Chem 265: 3738–3743.
Barker J, Gratten M, Riley I, Lehmann D, Montgomery J, Kajoi M, Gratten H, Smith D, Marshall TFD, Alpers MP. (1989) Pneumonia in children in the eastern highlands of Papua New Guinea: a bacteriological study of patients selected by standard clinical criteria. J Infect Dis 159:348-352.
Barry AL, Phaller MA, Fuchs PC, Packer RR. (1994) In vitro activities of 12 orally administered agents against four species of bacterial respiratory pathogens from US medical centers in 1992 and 1993. Antimicrob Agents Chemother 38:2419-2425.
Barenkamp SJ, Munson RS Jr, Granoff DM. (1982) Outer membrane protein and biotype analysis of pathogenic nontypeable Haemophilus influenzae. Infect Immun 36:535-540.
Brooks GF, Lammel CJ, Blake MS, Kusecek B, Achtman M. (1992) Antibodies against IgA1 protease are stimulated both by clinical disease and asymptomatic carriage of serogroup A Neisseria meningitidis. J Infect Dis 166:1316-1321.
Brown WJ. (1988) National Committee for Clinical Laboratory Standards Agar Dilution Susceptibility Testing of Anaerobic Gram-Negative Bacteria. Antimicrob Agents Chemother 32:385-390.
Brunton J, Clare D, Meier MA. (1986) Molecular epidemiology of antibiotic resistance plasmids of Haemophilus species and Neisseria gonorrhoeae. Rev Infect Dis 8: 713-724.
Bush K GA, Jacoby, AA Medeiros. (1995) A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39:1211-1233.
Brunton J, Clare D, Meier MA. (1986) Molecular epidemiology of antibiotic resistance plasmids of Haemophilus species and Neisseria gonorrhoeae. Rev Infect Dis 8:713-724.
Campos J, Chanyangam M, DeGroot R., Smith AL, Tenover FC, Reig R. (1989) Genetic relatedness of antibiotic resistance determinants in multiply resistant Haemophilus influenzae. J Infect Dis 160:810-817.
Centers for Disease Control and Prevention (CDC). (2002) Progress toward elimination of Haemophilus influenzae type b invasive disease among infants and children in United States, 1998-2000. MMWR Morb Mortal Wkly Rep 51: 234-237.
Cerquetti M ML, Ciofi degli Atti G Renna AE, Tozzi ML, Garlaschi, P Mastrantonio. (2000) Characterization of nontype b Haemophilus influenzae strains isolated from patients with invasive disease. J Clin Microbiol 38:4649-4652.
Chipps BE, Talama RC, Winklestein JA. (1978) IgA deficiency, recurrent pneumonia, and bronchiectasis. Chest 73:519-526.
Clancy R, Cripps A, Murree-Allen K, Yeung S, Engel M. (1985) Oral immunisation with killed Haemophilus influenzae for protection against acute bronchitis in chronic obstructive lung disease. Lancet ii:1395-1397.
Cookson BT, Cho HL, Herwaldt LA, Goldman WE. (1989) Biological activities and chemical composition of purified tracheal cytotoxin of Bordetella pertussis. Infect Immun 57:2223-2229.
Cooper MD, McGee ZA, Mulks MH, Koomey JM, Hindman TL. (1984) Attachment to and invasion of human fallopian tube mucosa by an IgA1 protease-deficient mutant of Neisseria gonorrhoeae and its wild-type parent. J Infect Dis 150:737-744.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文