跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔣曉秋
研究生(外文):Hsiao-chiu Chiang
論文名稱:20毫克simvastatin治療高血脂病患之有效性與安全性評估:12週研究
論文名稱(外文):Efficacy and safety of 20mg simvastatin treatment in hypercholesterolemia: a 12-week study
指導教授:楊明仁楊明仁引用關係
指導教授(外文):Ming-jen Yang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:生物醫學科學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:73
中文關鍵詞:低密度脂蛋白三酸甘油脂總膽固醇高密度脂蛋白高血脂
外文關鍵詞:hypercholesterolemiasimvastatinLDLHDLtriglyceridecholesterol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:1
已有許多國外臨床研究顯示simvastatin對高血脂症具有良好的治療效果與安全性,但都是針對西方人種,少有東方人種或國內的研究結果。由於本國的健保制度規定處方simvastatin高血脂藥物從最低有效劑量(20mg)開始使用,而且以3個月為一觀察評估期,視需要再調整劑量。因此,基於國內也少有投與simvastatin於高血脂病患的臨床研究,以及符合本國健保局的規定與藥物經濟性之考量,設計此一研究,藉由投與最低有效劑量的simvastatin予高血脂病患,來評估是否最低有效劑量的simvastatin就具有療效性與服用的安全性。本試驗為隨機的設計,先篩選出65位原發性高血脂症病患,先進入4週的飲食控制期,然後僅有49位參與實驗者則開始投與每天20mg simvastatin,連續治療12週後,觀察總膽固醇、三酸甘油脂、低密度脂蛋白、高密度脂蛋白等數值變化,與其他可供評估安全性的各項血液生化數值之變化,並記錄受試者回診時的主訴不良反應。總共39位病患完成整個療程並符合計劃書的實驗設計之進行。療效方面,服藥12週後,總膽固醇平均值(196.4±41.8 mg/dL)降低22.5%(p<0.001),三酸甘油脂平均值(134.8±88.3mg/dL)降低31.8%(p=0.006),低密度脂蛋白平均值(109.3±34.5 mg/dL)降低29.8%(p<0.001);以上降低的程度,皆達統計上有意義的差異。鹼性磷酸酶與鈣質等數值在服藥12週後皆無明顯地改變。男性服藥後的TG平均值下降並不明顯,但女性服藥後的TG平均值下降卻非常顯著,服用simvastatin 12週後對TG值的影響有性別上的差異性。吸煙者服藥後的TG平均值下降並不明顯,但未吸煙者服藥後的TG平均值卻有顯著下降效果,服用simvastatin 12週後對TG值的影響有吸煙與否的差異性。安全性方面,49位參與實驗者中有7位(14.3%),其中3位(6.1%)中止試驗,曾有肌肉酸痛發生; 有17位(34.7%)發生短暫且輕微的AST與ALT等肝功能指數上升,但無發生明顯肝臟受損的病例。結論是,simvstatin有降低血脂肪的療效,尤其是降低總膽固醇和低密度脂蛋白的效果顯著,而且耐受性佳。
Background. The published reports of the effectiveness of simvastatin in treatment of hypercholesterolemia were mostly conducted in western populations, and only few studies in Asian or domestic populations have ever been reported. By regulations from Bureau of National Health Insurance, the effective dosage of lipid lowering agents should be started from lower dose, such as 20 mg of simvastatin per day. Whether this dosage of simvastatin is effective for treatment of patients with hypercholesterolemia and the efficacy and safety of such dosage are the objects of this study.
Materials and Methods. After the approval of IRB in a medical center located at north Taiwan, a randomized 12-week study was conducted to evaluate the efficacy and safety of 20mg/day simvastatin treatment on hypercholesterolemia. By randomization 65 patients, followed up at cardiovascular outpatient department under the diagnosis of primary hypercholesterolemia, were enrolled into a 4-week washout period, and finally 49 intent-to-treat patients entered a 12-week treatment with 20mg simvastatin per day, given through oral routine in the evening. Demographic and laboratory data were obtained before and after treatment. The primary efficacy measure was the changes from baseline in lipid parameters. Tolerability was assessed in terms of the overall incidence of adverse experiences and the most commonly reported adverse experiences.
Results. The per-protocol analyses included 39 hypercholesterolemic patients whom completed 12 weeks of therapy. Total cholesterol and LDL cholesterol at the end of the study period showed significant reductions by 22.5% (p<0.001) and 29.8%(p<0.001), respectively. Triglyceride also showed a significant reduction by 31.8% (p=0.006), whereas total alkaline phosphatase and calcium showed a weak and insignificant change over the study period. The female group had significantly greater reduction in triglyceride than that in the male group, and the non-smoking group also had significantly greater reduction in triglyceride than that in smoking group after 12-week treatment. There were 17 studied cases (34.7%) had minor transient but clinical insignificant increases in serum aspartate aminotransferase and alanine aminotransferase, and 7 cases (14.3%) experienced symptom of painful muscle, of whom 3 cases (6.1%) dropped out this study.
Conclusion. Our results, although obtained from a small scale of hypercholesterolemic patients, suggest a probable positive efficacy and good tolerability with only few minor side effects of simvastatin on blood lipids.
中文摘要……………………………………………………………………..I
英文摘要…………………………………………………………………….III
英文縮寫表………………………………………………………………….IV
論文內文……………………………………………………………………..1
一.背景介紹與目的………………………………………………….......1
二.研究方法與材料…………………………………………………….20
三.實驗結果…………………………………………………………….28
四. 討論………………………………………………………………...34
參考文獻……………………………………………………………………43
表……………………………………………………………………………54
圖……………………………………………………………………………65
1.Namsik C, Kathy L, Somkiat S. STATT: A titrate-to-goal study of simva- statin in Asian patient with coronary heart disease. Clinical Therapeutics. 2001; 23: 858-870.
2. Michael AC. Effective use of statins to prevent coronary heart disease. Am
Fam Physician. 2001;63:309-20,323-4.
3. Heart Protection Study Colllaborative Group. MRC/BHF heart protection
study of cholesterol lowering with simvastatin in 20536 high-risk indivi-
duals: a randomized placebo-controlled trial. Lancet.2002; 360:7-22.
4. Zosia K. Statins are the new aspirin, Oxford researchers say. BMJ. 2001; 323:1145.
5. Gabriele WS. Statins as a anti-inflammatory agents. TRENDS in Pharmaco- logical Sciences. 2002; 23:482-486.
6. Joseph L, Michael SB. Regulation of the mevalonate pathway. Nature. 1990;
343:425-430.
7. Nakanish M, Goldstein JL, Brown MS. Multivalent control of 3-hydroxy-3-
methylglutaryl coenzyme A reductase. Mevalonate-derived product
inhibits translation of mRNA and accelerates degradation of enzyme. J
Biol Chem. 1988; 263:8929-8937.
8. Goldstein JL, Brown MS. Progress in understanding the LDL receptor
and HMG-CoA, two membrane proteins that regulate the plasma
cholesterol. J Lipid Res. 1984; 15:425-430.
9. Luskey KL, Stevens B. Human 3-hydroxy-3-metylglutaryl coenzyme A reductase. Conserved domains responsible for catalytic activity and
sterol regulation degradation. J Biol Chem. 1985; 260:10271-10277.
10. Endo A, Tsujita Y, Kuroda M, et al. Inhibition of cholesterol synthesis in
vitro and in vivo by ML -236A and 236, competitive inhibitiors
of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Eur J Biochem. 1977;
77:31-36.
11. Beg ZH, Stonik JA, Brewer HB Jr. In vitro and in vivo phosphorylation of
rat liver 3-hydroxy-3- methylglutaryl coenzyme A reductase and its
modulation by glucagons. J Biol Chem. 1980; 255:8541-8545.
12. Beg ZH, Stonik JA, Brewer HB Jr. Modulation of the enzymatic activity of
3-hydroxy-3- methylglutaryl coenzyme A reductase by multiple kinase systems involoving reversible phosphorylation: a review. Metabolism. 1987; 36: 900-917.
13. Roitelman J, Simoni RD. Distinct sterol and nonsterol signals for the regulated degradation of 3-hydroxy-3- methylglutaryl coenzyme A reductase. J Biol Chem. 1994; 269:6645-6650.
14. Goldstein JL, Brown MS. Regulation of low density lipoprotein receptors.
Implications for pathogenesis and therapy of hypercholesterolemia and
atherosclerosis. Circulation. 1987; 76:504-507.
15. Brown M.S, Goldstein IL. A receptor-mediated pathway for cholesterol
homeostasis. Science. 1986; 232:34-47.
16. Alberto C, Franco MM, Alberico LC. Pharmacology of competitive inhi-
bitors of HMG-CoA reductase. Pharmacological Research. 1995; 31:9-27.
17. Pohle K, Maffert R, Ropers D. Progression of aortic valve calcification :
association with coronary atherosclerosis and cardiovascular risk factors.
Circulation. 2001; 105:1927-1932.
18. Yasmaguchi T, Sugimoto T, Yano S, et al. Plasma lipids and osteoporosis in
postmenopausal women. Endocr J. 2002; 49:211-217.
19. Parhami F, Morrow AD, Balucan J. Lipid oxidation products have opposite
effects on calcifying vascular cell and bone cell differentiation. A possible
explanation for the paradox of arterial calcification in osteoporotic patients.
Arterioscler Thromb Vasc Biol. 1997; 17:680-687.
20. Tintut Y, Morony S, Demer LL. Hyperlipidemia promotes osteoclastic potential of bone marrow cells ex vivo. Arterioscler Thromb Vasc Biol. 2004; 24:e6-e10.
21. Joseph LW, Daniel S. Role of oxidized low density lipoprotein in atherogenesis. J Clin Inves. 1991; 88:1785-1792.
22. Steinberg D, Parthasarathy S, Carew JD, et al. Beyond cholesterol modifica-
tions of low density lipoprotein that increase its atherogenicity. N Engl J
Med. 1989; 320: 915-924.
23. Morel DW, DiCorleto PE, and Chisolm GM. Endothelial and smooth muscle
cells alter low density lipoprotein in vivo by free radical oxidation. Athero-
sclerosis. 1984; 4:357-364.
24. Berliner JA, Territo A, Sevanian S, et al. Minimally modified low density
lipoprotein stimulates monocyte endothelial interactions. J Clin Invest. 1990;
85:1260-1266.
25. Cushing, SD, Berliner JA, Valente AJ, et al. Minimally modified low density
lipoprotein induces monocyte chemotatic protein 1 in human endothelial
cells and smooth muscle cells. Proc Natl Acad Sci. USA. 1990 ; 87:
5134-5138.
26. Vlaicu RF, Niculesco F, Rus HG, et al. Immunohistochemical localization
of the terminal C5b-9 complement complex in human aortic fibrous
plaques. Atherosclerosis. 1985; 57:163-177.
27. Aviram M. Modified forms of low density lipoprotein affect platelet
aggregation in vitro.Thromb Res. 1989; 53:561-567.
28. Schuff-Werner P, Claus G, Armstrong VW, et al. Enhanced procoagulatory
activity (PCA) of human monocytes/macrophages after in vitro stimulation
with chemically modified LDL. Atherocslerosis. 1989; 78:109-112.
29. Drake TA, Hannai K, Fei H, et al. Minimally oxidized LDL induces tissue
factor expression in cultured human endothelial cells. Am J Pathol. 1991;
138:601-607.
30. Bossaller C, Habib GB, Yamanoto H, et al. Impaired muscarinic endothelium-dependent relaxation and cyclic quanosine 5’-monophosphated formation in atherosclerotic human coronary artery and rabbit aorta. J Clin Inverst. 1987; 79:170-174.
31. Kugiyama K, Kerns SA, Morrisett JD, et al. Impairment of endothelium
arterial relaxation by lysolecithin in modified low-density lipoproteins.
Nature. 1990; 344:160-162.
32. Parhami F, Garfinkel A, Linda LD. Role of lipids in Osteoporosis. Arteri
Thromb Vascul Biol. 2000; 20:2346-2348.
33. Rajendran KG, Chen SY, Sood A, et al. The anti-osteoporotic activity of
amine-carboxyboranes in rodents. Biomed Pharmacother. 1995; 49:131-140.
34. Xu H, Watkins BA, Seifert MF. Vitamin E stimulates trabecular bone
formation and alters epiphyseal cartilage morphometry. Calcil Tissue Int.
1995; 57:293-300.
35. Endo A. The discovery and development of HMG-CoA reductase inhibitors.
J Lipid Res. 1992; 33:1569-1982.
36. Grundy SM. HMG-CoA reductase inhibitors for treatment of hypercho-
lesterolemia. New Engl J Med. 1988; 319:24-33.
37. Kovanen PT, Bilheimer DW, Goldstein JL, et al. Regulatory role of hepatic
low density lipoprotein receptors in vivo in the dog. Proc Natl Acad Sci
USA. 1981; 78:1194-1198.
38. Gaw A, Packard CJ, Murray EF. Effects of simvastatin on apo B metabolism
and LDL subfraction distribution. J Clin Invest. 1987; 80:1692-1697.
39. Ma PTS, Gil G, Sudhof TC, et al. Mevinolin, and inhibitor of cholesterol
synthesis, induces mRNA for density lipoprotein receptor in livers of
hamsters and rabbits. Proc Natl Acad Sci USA. 1986; 83:8370-8374.
40. Arad Y, Ramakrishnan R, Ginsberg HN. Lovastatin therapy reduces low
density lipoprotein apo B levels in subjects with combined hyperlipidemia
by reducing the production of aop B-containing lipoproteins: implications
for the pathophysiology of apo B production. J lipid Res. 1990; 31:567-582.
41. Vega GL, Grundy SM. Lovastatin therapy in familial dysbetalipoprotein
effects on kinetics of apolipoprotein B. Atherosclerosis. 1988; 79:131-143.
42. Aikawa M, Sugiyama S, Hill CC, et al. Lipid lowering reduces oxidative
stress and endothelial cell activation in rabbit atheroma. Circulation
2002;106:1390-1396.
43. Kinlay S, Libby P, Ganz P. Endothelial function and coronary artery disease.
Curr Opin Lipidol. 2001; 12:383-389.
44. Gordon DJ, Probstfield JL, Garrison RJ, et al. High-density lipoprotein cholesterol and cardiovascular disease: four prospective American studies. Circulation. 1989;79:8-15.
45. Brewer HB Jr. Increasing HDL cholesterol levels. N Engl J Med. 2004;
350:1491-1494.
46. Spieker LE, SudanoI, Hurlimann D, et al. High-density lipoprotein restores
endothelial function in hypercholesterolemic men. Circulation. 2002;
105:1399-1402.
47. Ceriello A, Taboga C, Tonutti L, et al. Evidence for an independent and
cumulative effect of postprandial hypertriglyceridemia and hyperglycemia
on endothelial dysfunction and oxidative stress generation: effects of short-
and long-term simvastatin treatment. Circulation. 2002;106:1211-1218.
48. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared
with moderated lipid-lowering therapy on progression of coronary
atherosclerosis: a randomized controlled trial. JAMA. 2004; 291:1071-1080.
49. Laufs U, Liao JK. Post-transcriptional regulation of endothelial nitric oxide
synthese mRNA stability by rho GTPase. J Biol Chem. 1998;
273:24266-24271.
50. Feron O, Belhassen L, Kobzik L. et al. Hydroxy-methylglutaryl-coenzyme A
reductase inhibition promotes endothelial nitric acid oxide synthase
activation through a decrease in caveolin abundance. Circulation. 2001;
103:113-118.
51. Brouet A, Sonveaux P, Dessy C, et al. Hsp90 and caveolin are key targets
for the proangiogenic nitric oxide-mediated effects of statins. Circ Res.
2001; 89:866-873.
52. Kwak B, Mulhaupt F, Myit S, et al. Statins as a newly recognized type of
immunomodulator. Nat med. 2000; 6:1399-1402.
53. Frenette PS. Locking a leukocyte integrin with statins. N Engl J Med. 2001;
345:1419-1421.
54. Evan AS, Michael HD, Adrian SD, et al. Efficacy and safety of simvastatin
80 mg/day in hypercholesterolemic patients. Am J Cardiol. 1998;
82:311-316.
55. Scandinavian Simvastatin Survival Study Group. Randomised trial of
cholesterol lowering in 4444 patients with coronary heart disease: the
Scandinavian Simvastatin Survival Study(4S). Lancet. 1994; 334:1383-1389.
56. Peter J, Stephanie K, Irene L, et al. Comparative dose efficacy study of
atorvastatin versus simvastatin, pravastatin, lovastatin, and fluvastatin in
patients with hypercholesterolemia. Am J Cardio. 1998; 81:582-587.
57. Illingworth DR, Crouse JR III, Hunninghake DB, et al. A comparison of
simvastatin and atorvastatin up to maximal ecommended doses in a large
multicenter randomized clinical trial. Current Medical Research and
Opinion. 2001; 17:43-50.
58. Anders GO. Efficacy and safety of simvastatin for high-risk hypercho-
lesterolemia. Am J Cardiol. 1999; 83:1043-1048.
59. Maron DJ, Fazio S, Linton MF. Current perspectives on statins. Circulation.
2000; 101:207-213.
60. Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro
and in rodents by statin. Science. 1999; 286:1946-9.
61. Lecanda F, Avioli LV, Cheng SL. Regulation of bone matrix protein
expression and induction of differentiation of human osteoblasts and human
bone marrow stromal cells by bone morphogenetic protein-2. J Biol Chem.
1997; 265:386-396.
62. Chaudhari A, Ron E, Rethman MP. Recombinant human bone morpho-
genetic protein-2 stimulates differentiation in primary cultures of fetal rat
calvarial osteoblasts. Mol Cell Biochem. 1997; 167:31-39.
63. Ki HB, Won YL, Ki WO, et al. The effect of simvastatin on the proliferation
and differentiation of human bone marrow stromal cells. J Korean Med Sci.
2005; 20:438-444.
64. Maeda Toyonobu, Kawane T, Horiuch N. Induction of osteoblast differen-
tiation indices by statins in MC3T3-E1 cells. Journal of Cellular
Biochemistry. 2004; 92:458-471.
65. Elisabeth AH, Huibert AP, Pols AM, et al. Progression of aortic calcification
is associated with metacarpal bone loss during menopause: A popula-
tion-based longitudinal study. Arteroscler Thromb Vasc Biol. 2000;
20:1926-1931.
66. Von der Recke P, Hansen MA, Hassager C. The association between low
bone mass at the menopause and cardiovascular mortality. Am J Med.1999;
106:273-278.
67. Rubin MR, Shonni JS. Editorial: vascular calcification and osteoporosis—
the nature of the nexus. The Journal of Clinical Endocrinology &
Metabolism. 2004; 89: 4243-4245.
68. Bing Wu, Sammy E, Frederick S. Paradoxical effects of statins on aortic
myofibroblasts and osteoblasts implications for end-stage valvular heart
disease. Arteroscler Thromb Vasc Biol. 2005; 25: 592-597.
69. Kizu A, Shioi A, Jono S, et al. Statins inhibit in vitro calcification of human
vascular smooth muscle cells induced by inflammatory mediators. Journal of
Cellular Biochemistry. 2004; 93:1011-1019.
70. Watson KE, Bostrom K, Ravindranath R, et al. TGF-β1 and 25-hydroxy-
cholesterol stimulate osteoblast-like cells to calcify. J Clin Invest. 1994;
93:2106-2113.
71. Owen TA, Aronow M, Shalhoub V, et al. Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated of the bone extracellular matrix. J cell Physiol. 1990; 143:420-430.
72. Rüther U, Garber C, Komitowski D, et al. Deregulated c-fos expression
interferes with normal bone development in transgenic mice. Nature. 1987;
325:412-416.
73. Soriano P, Montgomery C, Geske R, et al. Targeted disruption of the c-src
proto-oncogene leads to osteopetrosis in mice. Cell. 1991; 64:693-702.
74. Thomas AO, Michael A, Victoria S, et al. Progressive development of the rat
osteoblast phenotype in vitro: reciprocal relationships in expression of genes
associated with osteoblast proliferation and differentiation during formation
of the bone extracellular matrix. Journal of Cellular Physiology. 1990;
143:420-430.
75. Rubin M, Rundek T, Lee H, et al. Cartoid artery plaque is associated with
increased serum calcium levels: the Northern Manhattan Study. J Bone
Miner Res. 2003; 17: SU416.
76. Montagnani A, Gonnelli S, Cepollaro C, et al. Effect of simvastatin
treatment on bone mineral density and bone turnover I hypercholesterolemic
postmenopausal women: a 1-year longitudinal study. Bone. 2003;
32:427-433.
77. Braatvedt GD, Bagg W, Gamble G, et al. The effect of atorvastatin on
markers of bone turnover I patients with type 2 diabetes. Bone. 2004; 35:
766-770.
78. Pasternak RC, Smith SC, Bairey-Merz CN, et al. ACC/AHA/NHLBI
clinical advisory on the use and safety of statins. J Am Coll Cardiol. 2002;
40:567-572.
79. Flint OP, Masters BA, Gregg RE, et al. Inhibition of cholesterol synthesis
by squalene synthase inhibitors does not induce myotoxicity in vitro.
Toxicol Appl Pharmacol. 1997; 145:91-98.
80. Folkers K, Langsjoen P, Willis R, et al. Lovastatin decreases coenzyme Q
levels in humans. Proc Natl Acad Sci USA. 1990; 87:8931-8934.
81. Thompson DD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA.
2003; 289:1681-1690.
82. Laaksonen R, Jokelainen K, Sahi T, et al. Decreases in serum ubiquinone
concentrations do not results in reduced levels in muscle tissue during
short-term simvastatin treatment in humans. harmacol Ther. 1995;
57:62-66.
83. Guijarro C, Blanco-Colio LM, Ortego M, et al. 3-hydroxy-a-methylglutaryl
coenzyme A reductase and isoprenylation inhibitors induce apoptosis of
vascular smooth muscle cells in culture. Circ Res. 1998; 83: 490-500.
84. Nakagawa H, Mutoh T, Kumano T, et al. Tyrosine phosphorylation of the
catalytic subunit p110 of phosphatidylinositol-3 kinase induced by
HMG-CoA reductase inhibitors its kinase activity in L6 myoblasts. FEBS
letters. 2001; 508:53-56.
85. Pierno S, De Luca A, Tricarico D, et al. Experimental evaluation of the
effects of pravastatin on electrophysical parameters of rat skeletal muscle.
Pharmacol Toxicol. 1992; 71:325-329.
86. Cornisi A, Bellosta S, Baetta R, et al. New insights into the pharmaco-
dynamic and pharmacokinetic properties of statins. Pharmacol Ther. 1999;
84:413-428.
87. Tomoyuki N, Ryu-ichi T, Yuichiro A, et al. Comparing myotoxic effects of
squalene synthase inhibitor, T-91485 and 3-hydroxy-a-methylglutaryl
coenzyme A (HMG-CoA) reductase inhibitors in human myocytes.
Biochemical Pharmacology. 2003; 66:2133-2139.
88. Jörgen Mölgaard, Susanne W, Anders GO. Efficacy and safety of simva-
statin for high-risk hypercholesterolemia. Am J Cardiol. 1999; 83:
1043-1048.
89. Law MR, Wald NJ, Rudnicka AR, et al. Quantifying effect of statins on low
density lipoprotein cholesterol, ischaemic heart disease, and stroke:
systematic review and meta-analysis. BMJ. 2003; 326:1423-1427.
90. Grundy SM, Cleeman JI, Merz CN, et al. Implication of recent clinical trials
for the national cholesterol education program adult treatment panel III
guidelines. Circulation. 2004;110:227-239.
91. Jeppesen J, Hein HO, Suadicani P, et al. Triglyceride concentration and
ischemic heart disease : an eight-year follow-up in the copenhagen male
study. Circulation. 1998; 97: 1029-1036.
92. Antonio MG. Triglyceride: the forgotten risk factor. Circulation. 1998; 97: 1027-1028.
93. Niina M, Mikko S, Björn E, et al. Postprandial elevation of apoB-48-con- taining triglyceride-rich particles and retinyl esters in normolipemic males
who smoke. Arteriosclerosis, Thrombosis, and Vascular Biology. 1997;17:2096-2102.
94. Craig WY, Palomaki GE, Haddow JE. Cigarette smoking and serum lipid
and lipoprotein concentrations: an analysis of published data. BMJ. 1989
Mar 25;298(6676):784-8.
95. Axelsen M, Eliasson B, Joheim E, et al. Lipid intolerance in smokers. J Intern Med. 1995 May;237(5):435-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top