跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.90) 您好!臺灣時間:2024/12/03 16:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張裕詮
研究生(外文):Yu-chuan Chang
論文名稱:高效能薄膜電晶體之製作與研究
論文名稱(外文):Study on fabrication of high performance thin film transistor
指導教授:張鼎張
指導教授(外文):Ting-Chang Chang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:光電工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:57
中文關鍵詞:薄膜電晶體漏電流
外文關鍵詞:thin film transistorphoto leakage current
相關次數:
  • 被引用被引用:0
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來,薄膜電晶體包含主動層為非晶矽或多晶矽已經被廣泛應用在液晶顯示器(LCD)的畫素驅動元件。尤其,非晶矽(a-Si:H)在大尺寸面板以及大量製造上的優勢。
但是非晶矽有高的光敏感性,在光線照射下將導致高光致漏電。尤其,在光線照射下的高漏電流將是依個很嚴重的問題因為投影顯示器下需要更強的背光模組。隨著解析度的增加,薄膜電晶體的效能也必須隨著增加,才能符合每次充電的時間越來越短。薄膜電晶體的效能包含了ON電流,OFF電流,臨界電壓等
在者,在平面顯示器,改善薄膜電晶體的有效電子遷移率,已經朝向整合電路,而再結晶技術產生多晶矽已經成為潮流。然而雷射再結晶技術遭受到高成本、製程複雜、在大尺寸上的不均勻性的影響。所以,取而被強力渴望的是直接沉積的高品質低溫多晶矽的前途將大有可為。
本論文中,我們將利用高密度電漿系統直接沉積多晶矽技術,製造薄膜電晶體。而且透過電漿處理改善元件特性。並且透過照光實驗,證實對直接沉積多晶矽對光漏電有明顯抑制的效果,對於面板越來越強的背光模組有正面的幫助。而透過電壓以及電流的壓力測試,元件的可靠度得到了證實。而元件在電性方面直接沉積多晶矽的元件亦表達出優越的有效電致遷移率,而高性能的表現更能應用在大尺寸主動示陣列液晶顯示器上(AMLCD)或者主動示陣列有機發光二極體顯示器(AMOLED)技術中。
In recently yesrs,Thin-film transistors (TFTs) including an active layer of amorphous silicon or polycrystalline silicon have been widely employed as the pixel-driving elements of a liquid crystal display (LCD). Particularly, a-Si:H TFT is advantageous to the production of large screen displays and facilitates mass-production.
a-Si:H has high photoconductivity which results in high off-state leakage currents of a-Si:H TFT under light illumination . Particularly, the off-state leakage current under light illumination is a serious problem in the projection and/or video displays which require high intensity backlight illumination.As the resolutions is higher , the TFT’s performance must be higher to achieve the short charge time each line can charge. The performance includes mobility ,on current, off current, photo leakage current, threshold voltage ,and subthrehold swing.
Furthermore, the to improve the mobility of thin-film transistors (TFT) to enable total integration of peripheral electronics in flat panel displays and imagers has led to recrystallized polycrystalline silicon (poly-Si) as the material of choice.
However, laser recrystallized polycrystalline silicon suffers from high cost , complex processing, and significant nonuniformity over a large area. Indeed, the direct deposition of good-quality low-temperature poly films is highly desirable and constitutes a promising alternative.
In this thesis, we use HDPCVD to fabricate direct deposition poly-TFT successfully.Through plasma passivation, we improve the characteristic of device. The photo-Leakage current have been reduced obviously to our device under light illumination, and is benefit to higher intensity light of large screen display. And our TFT device exhibits stable characteristics with voltage and current stress , and it’s also confirmed that the device is reliable. On the characteristic of device, the direct-deposited poly TFT device exhibits higher effective carrier mobility than that of conventional one. For that reason, the high performance provides the potential of the direct-deposited poly TFT to apply for AMLCD and AMOLED technology.
Contents

Abstract(Chinese)……………………………………………………..I
Abstract(English)……………………………………………………..III
Content………………………………………………………………..IV
Table Captions………………………………………………………..VI
Figure Captions…………………………………………………….....VII

Chapter:1 introduction
1.1General background ……………………………………...…1
1.2Motivation…………………………………………………...2
1.3Organization of This Thesis…………………………………3

Chapter:2 High performace tft
2.1 Operation method &device requirement……………………5
2.2 Discussion of photo leakage current mechanism ………......6
2.3 Solution for Ion---Transfer Line Method ……………………7
2.4 Solution for Ioff………………………………………………8

Chapter:3 Fabrication of high performance tft
3.1 HDPCVD………………………………………….………10
3.1.1 Introduction ……………………………………...….10
3.1.1 HDPCVD direct deposition……………………..…...11
3.1.2 HDPCVD BEN method……………………………...11
3.3 Determination of poly Si…………………………………..12
3.3.1 TEM analysis...............................................................12
3.3.2 RAMAN analysis........................................................12
3.4 Device fabrication flow……………………………………13
3.5 summery…………………………………………………...14

Chapter:4 Result characteristics analysis and discussion
4.1 HDPCVD condition 1……………………………………..15
4.1.1 Device characteristics with SiF4………………….…15
4.1.2 Plasma passivation improve device characteristic…..15
4.1.3 Device photo leakage current………………………..16
4.2 HDPCVD condition2 optimized condition………………...16
4.2.1 Device characteristic without SiF4…………………..17
4.2.2 Device characteristic after passivation …………...…17
4.2.3 Device characteristic after photo current test………..18
4.3 Voltage stress………………………………………………18
4.4 Current stress………………………………………………19
4.5 Summary……………………………………………..……20

Chapter: 5Conclusion …………………………………………………..21

References………………………………………………………………22
Reference

Chapter1
[1.1] T. Sunata, T. Yukawa, K. Miyake, Y. Matsushita, Y. Ugai, J. Tamamura,and S. Aoki, “A large-area high-resolution active-matrix color LCDaddressed by a-Si TIT’S” IEEE Trans. Electron Devices,vol. 33, pp.121 2-12 17, 1986
[1.2] F. C. Luo, T. Ah, S. Bevacqua, and W. Heinze, “Fabrication of a-Si
TIT-LC color display panels,” in 1988 SID Dig., p. 235.

[1.3] H. Yamamoto, H. Matsumaru, K. Shirahashi, M. Nakatani, A. Sasano, N.
Konishi, K. Tsutsui, and T. Tsukada, IEDM Tech. Dig.,851 (1990)
[1.4] Y. Okita, T. Yamada, N. Nakatani, S. Ohima, Y. Marusita, T. Arioka,
and T. Nakakado, “A 1.5 megapixel a-Si TIT-LCD module for HDTV
projector,” in 1991 SID Dig., p. 41 1.
[1.5] G. Kawachi, E. Kimura, Y. Wakui, N. Konishi, H. Yamamoto, Y.
Matsukawa, A. Sasano, Electron Devices, IEEE Transactions on ., 41, 7(1994)

[1.6] T. Tsujimura, Y. Kobayashi, K. Murayama, A. Tanaka, M. Morooka, E.
Fukumoto, H. Fujimoto, J. Sekine, K. Kanoh, K. Takeda, K. Miwa, M. Asano, N.
Ikeda, S. Kohara, and S. Ono, SID Tech. Dig.,6(2003)

[1.7]Y. He, R. Hattori, J. Kanicki, IEEE TRANSACTIONS ON ELECTRON DEVICE,
48, 7(2001)


[1.8]A. Nathan, D. Striakhilev, .Pervati, .K. akariya,.A.Kumar, K. S. Karim, A.
Sazonov, Materials and Devices Technology as held at the 2003 MRS Spring
Meeting.; 29(2003)
[1.9] M. Katayama, K. Nakazawa, Y. Kanemori, M. Katagami, Y. Kanatani, K.
Yano, M. Hijikigawa, in Display Research Conference., 243(1991)

Chapter2
[2.1] S. Martin,J. Kanicki, N.szydlo,and A.Rolland.Analysis of the amorphous silicon thin-film transistors behavior under illumination.Proceedings of the AMLCD’97,pp.211-214,1997.
[2.2] C.Mcandrew and P. A. Layman,”Mosfet effective channel length threshold voltage and series resistance determination by robust optimization” IEEE Trans. Electron Devices,39(10),2298(1992)
[2.3] J. Robertson and M. J. Powell, J. Non-Cryst Solids, 77-78,1007(1985).
[2.4]S. M. Sze, SEMICONDUCTOR DEVICES Physics and Technology 2ndEDITION, Ch.9, section.1, Wiley, New York, 2001

Chapter3
[3.1]V. L. Dalal, S. Kaushal, E.X. Ping, J. Xu, R. Knox and K. Han, Proc. Of Mater. Res. Society, 377, 137(1995)
[3.2]R. Bruggemann, A. Hierzenberger, P. reinig, M. Rojahn, M. B. Schubert, S. Schweitzer, H. N. Wank and I. Zrinscak, J. Non-Cryst. Solids, 227-230, 982(1998)

[3.3] A. Masuda, R. Iiduka, A. Heya, C. Niikura and H. Matsumura, J. Non-Cryst. Solids, 227-230, 987(1998)

[3.4] Gaisler, S. V.; Semenova, O. I.; Sharafutdinov, R. G.; Kolesov, B. A.. Physics of the Solid State, Aug2004, Vol. 46 Issue 8, p1528-1532, 5p; DOI: 10.1134/1.1788789; (AN 14110520)


Chapter4
[4.1]Chien Kuo Yang; Chung Len Lee; Tan Fu Lei;Electron Device Letters, IEEE
Volume 16, Issue 6, June 1995 Page(s):228 - 229 Digital Object Identifier 10.1109/55.790717

[4.2] Y. Kaneko, A. Sasano, and T. Tsukada, “Characterization of instability
in amorphous silicon thin-film transistors,” J. Appl. Phys., vol. 69, pp.
7301–7305, 1991
[4.3] Shah M. Jahinuzzaman, Afrin Sultana, Kapil Sakariya, Peyman Servati, and Arokia Nathan “Threshold voltage instability of amorphous silicon thin-film transistors under constant current stress”Appl. Phys. Lett. 87, 023502 (2005)
[4.4] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, Appl. Phys.
Lett. 51, 1242 ,1987
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 鍾志強(2000)。運動自我效能對大學生運動行為的影響。科技學刊,9(1),59-80。
2. 謝秀芳、鄭麗霞(1995)。技職院校學生休閒活動參與狀況之研究。體育學報,20,123-134。
3. 蔡守浦、張志成(2005)。健身運動行為之改變--認知取向理論的思維,大專體育。76,頁106-112。
4. 蔡守浦、張志成、高群超、周靈山(2005)。自我決定對運動階段的區別分析。大專體育學刊。7:2,頁87-99。
5. 劉立宇(1996)。單一次不同速度的步行運動對年輕女性血液脂肪的影響。臺南師院學報,29,287-317。
6. 黃雅文、姜逸群、藍忠孚、方進隆、劉貴雲(1991)。中老年人健康行為之探討。公共衛生,18(2),133-147。
7. 黃文俊(1999)。十六歲高中女生之坐式生活型態在健康體適能之影響分析研究。大專體育,44,31-38。
8. 張彩秀、姜逸群(1995)。國人運動行為、體適能及主觀健康狀況之研究。學校衛生,26,2-10。
9. 張坤鄉(1991)。國中教師休閒活動狀況之調查研究。教育資料文摘,第15卷,第1655期,頁129-163。
10. 高毓秀、黃奕清(2000)。成年人運動行為影響因素之徑路分析。護理研究,8(4),435-446。
11. 姜逸群、呂槃、江永盛、黃雅文(1988)。民眾的健康意識及中老年病之預防健康行為調查。衛生教育雜誌,9,67-81。
12. 李彩華、方進隆(1998)。十二週體能訓練對婦女健康體能與血脂肪之影響。體育學報,26,145-152。
13. 李正美、許秀桃、李寧遠(1992)。水中有氧運動訓練對婦女體適能、身體組成及血液生化值之影響。國立體育學院論叢,3(1),139-150。
14. 吳賢全(1996)。大同公司30 歲至50 歲員工健康體適能狀況研究。大同學報,26,293-306。
15. 吳貴琍(1999)。規律運動對停經前婦女的骨密度和性激素的影響。體育學報,27,183-192。