跳到主要內容

臺灣博碩士論文加值系統

(44.200.122.214) 您好!臺灣時間:2024/10/14 11:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳海明
研究生(外文):Hai-ming Chen
論文名稱:鎂銅銀釓塊狀非晶質合金之玻璃形成能力及機械性質
論文名稱(外文):Glass Forming Ability and Mechanical Properties of Mg-Cu-Ag-Gd Bulk Metallic Glasses
指導教授:黃志青黃志青引用關係
指導教授(外文):Chih-ching Huang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:137
中文關鍵詞:機械性質.變形機構壓縮測試玻璃形成非晶質
外文關鍵詞:shear bandamorphous alloybulk metallic glassdeformation mechanism.compression tests
相關次數:
  • 被引用被引用:4
  • 點閱點閱:266
  • 評分評分:
  • 下載下載:42
  • 收藏至我的研究室書目清單書目收藏:0
近幾十年來,非晶質合金因具有一些獨特的物理性質及化學性質,因此引起世界各地眾多學者的研究與探討,隨著時代進步許多研究家的努力下,以往在非晶質合金製造尺寸限制的難題早已克服,其中塊狀非晶質合金為最近這幾年的研究主流,而在眾多非晶質合金系統中,鎂基非晶質合金因其具有高比強度,低玻璃轉換溫度和低密度等特性,因此在輕金屬之應用中,佔有相當大的發展潛力及優勢。

本實驗為鎂基塊狀非晶質合金之玻璃形成能力及機械性質之研究。Mg65Cu25Gd10合金經由傳統的銅模鑄造方式能夠成功的製作出具直徑3-6 mm及長度約5 cm的棒材,而藉由銀的添加後發現,Mg65Cu15Ag10Gd10合金亦可製作出相同尺寸大小的棒材。

在熱性質方面,Mg65Cu25Gd10非晶質合金顯示出寬廣的過冷液體區間,意味著其具有優良的熱穩定性,此外根據非晶質合金玻璃形成能力的參考指標,其結果顯示Mg65Cu25Gd10據有良好的玻璃形成能力,然而銀的添加會使得Mg65Cu15Ag10Gd10非晶質合金降低其熱穩定性及gama值,然而在Trg方面卻有著較高的值。在微氏硬度量測方面,Mg65Cu25Gd10非晶質合金顯示著非晶質高硬度之特性,再者銀添加的效應對於硬度來說更能有效增加其硬度。
The thermal and mechanical properties of the Mg-based bulk metallic glasses are reported in this thesis. The original ingots were prepared by arc melting and induction melting. The thermal and mechanical properties of the Mg-based bulk metallic glasses are reported in this thesis. The original ingots were prepared by arc melting and induction melting. The Mg65Cu25Gd10 and Mg65Cu15Ag10Gd10 bulk metallic glasses with different diameters from 3 to 6 mm were successfully fabricated by conventional copper mold casting in an inert atmosphere.

The Mg65Cu25Gd10 bulk metallic glass shows the high glass forming ability and good thermal stability. However, the addition of Ag in the Mg65Cu15Ag10Gd10 alloy degrades the thermal stability. Based on the DSC results, the supercooled liquid region
Content......................................................................................................................................... i
Tables List.................................................................................................................................. iv
Figures List.................................................................................................................................. v
Abstract……………………………………………………………………………………...... xi
1 Introduction……………………....................................................................................... 1
1.1 Amorphous metallic alloys….................................................................................. 1
1.2 The development of Mg-based amorphous alloys.................................................... 2
1.3 The effects of alloy additions in Mg-based alloys................................................... 3
1.4 The purpose of this study......................................................................................... 4
2 Background and literature review…................................................................................. 6
2.1 The evolution of amorphous alloys.......................................................................... 6
2.2 The evolution of fabrication methods of amorphous alloys.....................….…....... 8
2.3 The system of bulk amorphous alloys.................................................................... 10
2.4 The factors influencing the glass forming ability................................................... 11
2.5 The empirical rules for the synthesis of amorphous alloys.................................... 13
2.6 The characterization of amorphous alloys.............................................................. 16
2.6.1 Mechanical properties....................................................................................... 16
2.6.2 Magnetic properties………………………….................................................. 17
2.6.3 Chemical properties.......................................................................................... 18
2.6.4 Other properties of amorphous alloys.............................................................. 19
2.7 The deformation mechanisms of amorphous alloys……………………………... 20
3 Experimental procedures................................................................................................. 23
3.1 Materials................................................................................................................. 23
3.2 Sample preparation................................................................................................. 24
3.2.1 Arc melting.................................................................................................... 24
3.2.2 Induction melting........................................................................................... 25
3.2.3 Injection casting............................................................................................. 25
3.3 Property measurements and analyses..................................................................... 26
3.3.1 X-ray diffraction............................................................................................ 26
3.3.2 Qualitative and Quantitative constituent analysis......................................... 27
3.3.3 DSC thermal analysis.................................................................................... 27
3.3.4 Density measurements................................................................................... 27
3.3.5 Microhardness testing.................................................................................... 28
3.3.6 Compression testing...................................................................................... 28
3.3.7 Thermal mechanical and dynamic mechanical analyzer............................... 29
3.3.8 Microstructure examination........................................................................... 30
4 Results………………..………………............................................................................. 32
4.1 Sample preparations................................................................................................ 32
4.2 SEM/EDS observation........................................................................................... 33
4.3 XRD analyses……................................................................................................ 33
4.4 DSC analyses.......................................................................................................... 34
4.5 Density measurements…….................................................................................... 37
4.6 Microhardness tests……........................................................................................ 37
4.7 TMA/DMA analyses.............................................................................................. 38
4.7.1 TMA analysis................................................................................................. 38
4.7.2 DMA analysis............................................................................................... .39
4.8 Compression testing............................................................................................... 39
4.9 Compressive fracture characteristics...................................................................... 41
5 Discussions…………………............................................................................................ 44
5.1 The effects of the Ag addition on the Mg-Cu-Ag-Gd alloy system....................... 44
5.2 The glass forming ability of the Mg-Cu-Ag-Gd BMGs........................................ .45
5.3 Thermal mechanical properties of the Mg65Cu25Gd10 BMG................................... 48
5.3.1 TMA analysis................................................................................................. 48
5.3.2 DMA analysis............................................................................................... .49
5.4 Compressive mechanical properties of the Mg65Cu25Gd10 BMG with various specimen height to diameter ratios........................................................................ 51
6 Conclusions..……..…………………............................................................................... 56
References................................................................................................................................. 58
Tables......................................................................................................................................... 61
Figures....................................................................................................................................... 76
[1] 吳學陞, 工業材料, 149 (1999), pp. 154-165.
[2] N.H. Pryds, Mater. Sci. Eng. A, 375-377 (2004), pp. 186-193.
[3] A. Inoue, Mater. Sci. Eng. A, 304-306 (2001), pp. 1-10.
[4] G. Yuan and A. Inoue, J. Alloys Compd., 387 (2005), pp. 134-138.
[5] A. Inoue, A. Kato, T. Zhang, S.G. Kim and T. Masumoto, Mater. Trans. JIM, 32 (1991), pp. 609-616.
[6] A. Inoue, T. Nakamura, N. Nishiyama and T. Masumoto, Mater. Trans. JIM, 33 (1992), pp. 937-945.
[7] G. Shao, B. Lu, Y.Q. Liu and P. Tsakiropoulos, Intermetallics, 13 (2005), pp. 409-414.
[8] C.T. Liu and Z.P. Lu, Intermetallics, 13 (2005), pp. 415-418.
[9] E.S. Park, H.G. Kang, W.T. Kim and D.H. Kim, J. Non-Cryst. Solids, 279 (2001), pp. 154-160.
[10] K. Amiya and A. Inoue, Mater. Trans. JIM, 41 (2000), pp. 1460-1462.
[11] H. Men, Z.Q. Hu and J. Xu, Scripta Mater., 46 (2002), pp. 699-703.
[12] G. Yuan, T. Zhang and A. Inoue, Mater. Lett., 58 (2004), pp. 3012-3016.
[13] X.K. Xi, D.Q. Zhao, M.X. Pan and W.H. Wang, Intermetallics, 13 (2005), pp. 638-641.
[14] X.K. Xi, R.J. Wang, D.Q. Zhao, M.X. Pan and W.H. Wang, J. Non-Cryst. Solids, 344 (2004), pp. 105-109.
[15] H. Men, W.T. Kim and D.H. Kim, J. Non-Cryst. Solids, 337 (2004), pp. 29-35.
[16] G. Yuan, K. Amiya and A. Inoue, J. Non-Cryst. Solids, 351 (2005), pp. 729-735.
[17] W. Klement, R. H. Williams and P. Duwez, Nature, 187 (1960), pp. 869-870.
[18] H.S. Chen and D. Turnbull, Acta Metall., 17 (1969), pp. 1021-1031.
[19] H.S. Chen. Acta Metall., 22 (1974), pp. 1505-1511.
[20] H.W. Kui, A.L. Greer and D. Turnbull, Appl. Phys. Lett., 45 (1984), pp. 615-616.
[21] A. Inoue, T. Zhang and T. Masumoto, Mater. Trans. JIM, 30 (1989), pp. 965-972.
[22] A. Inoue, A. Kato, T . Zhang, S.G. Kim and T. Masumoto, Mate. Trans. JIM, 32 (1991), pp. 609-616.
[23] T. Zhang, A. Inoue and T. Masumoto, Mater. Trans. JIM, 32 (1991), pp. 1005-1010.
[24] A. Inoue, N. Nishiyama, and H. Kimura, Mater. Trans. JIM, 38 (1997), pp.179-183.
[25] C. Fan, A. Takeuchi and A. Inoue, Mater. Trans. JIM, 40 (1999), pp. 42-51.
[26] H.S. Chen and C.E. Miller, Rev. Sci. Instrum, 41 (1970), pp. 1237-1238.
[27] H.H. Liebermann and C.D. Graham, IEEE Trans. Magn., MAG-12 (1976), pp. 921-926.
[28] A. Inoue, Acta Mater., 48 (2000), pp. 279-306.
[29] D. Turbbull and J.C. Fisher, J. Chem, Physics, 17 (1949), pp. 71-73.
[30] Z.P. Lu, H. Tan, Y. Li and S.C. Ng, Scripta Mater., 42 (2000), pp. 667-673.
[31] T.A. Waniuk, J. Schroers and W.L. Johnson, Appl. Phys. Lett., 78 (2001), pp. 1213-1215.
[32] A. Inoue, W. Zhang, T. Zhang and K. Kurosaka, Acta Mater., 29 (2001), pp. 2645-2652.
[33] T.D. Shen and R.B. Schwarz, J. Mater. Res., 14 (1999), pp. 2107-2115.
[34] B. S Murty and K. Hono, Mater. Trans. JIM, 41 (2000), pp. 1538-1544.
[35] Z.P. Lu and C.T. Liu, Acta Mater., 50 (2002), pp. 3501-3512.
[36] T. Egami, Mater. Sci. Eng. A, 226 (1997), pp. 261-267.
[37] C.H. Shek, Y.M. Wang and C. Dong, Mater. Sci. Eng. A, 291 (2000), pp. 78-85.
[38] S. Fang, X. Xiao, L. Xia, W. Li and Y. Dong, J. Non-Cryst. Solids, 321 (2003), pp.120-125.
[39] W. Chen, Y. Wang, J. Qiang and C. Dong, Acta Mater., 51 (2003), pp. 1899-1907.
[40] T. Zhang and A. Inoue, Mater. Trans. JIM, 39 (1998), pp. 857-862.
[41] A. Inoue, Bulk Amorphous Alloys. Trans. Tech. Publications, Zurich, 1998.
[42] Y. Yokoyama, N. Nishiyama, K. Fukaura, H. Sunada and A. Inoue, Mater. Trans. JIM, 40 (1999), pp. 696-699.
[43] Y. Yoshizawa, S. Oguma and K. Yamauchi, J. Appl. Phys., 64 (1988), pp. 6044-6046.
[44] T.D. Shen and R.B. Schwarz, Acta Mater., 49 (2001), pp. 837-847.
[45] K. Asami and A. Inoue, Mater. Sci. Eng. A, 375–377 (2004), pp. 235-239.
[46] T. Shoji and A. Inoue, J. Alloys Compd., 292 (1999), pp. 275-280.
[47] K. Isogai, T. Shoji, H.M. Kimura and A. Inoue, Mater. Trans. JIM, 41 (2000), pp. 1486-1486.
[48] A. Inoue, Bulk Amorphous Alloys, Trans. Tech. Publications, Zurich, 1998-1999.
[49] Z.P. Lu, G. Wang, J. Shen, J.F. Sun, Z.H. Stachurski and B.D. Zhou, Mater. Sci. Eng. A, 398 (2005), pp. 82-87.
[50] 鄭振東,非晶質金屬漫談,建宏出版社,Taipei,Taiwan,1990.
[51] X.S. Xiao, S.S. Fang, L. Xia, W.H. Li, Q. Hua, Y.D. Dong, J. Non-Cryst. Solids, 330 (2003), pp. 242-247.
[52] M. Kusy, U. Kuhn, A. Concustell, A. Gebert, J. Das, J. Eckert, L. Schultz, M.D. Baro, Intermatillcs, (2006), pp.1-5, in press.
[53] C. Fan, L.J. Kecskes, D.C. Qiao, H. Choo, P.K. Liaw, J. Non-Cryst. Solids, 352 (2006), pp. 174-179.
[54] C.A. Schuh, A.C. Lund, T.G. Nieh, Acta Mater., 52 (2004), pp. 5879-5891.
[55] Y.T. Cheng, MS Thesis, NSYSU, Taiwan, 2005.
[56] W.Y. Liu, H.F. Zhang, Z.Q. Hu, H. Wang, J. Alloys Compd., 397 (2005), pp. 202-206.
[57] Z.F. Zhang, J. Eckert, J. Schultz, Acta Mater., 51 (2003), pp. 1167-1179.
[58] T.C. Hufnagel, P. Deiry, R.P. Vinci, Scripta Mater, 43 (2000), pp. 1071-1075.
[59] T.C. Hufnagel, C. Fan, , J. Lia, S. Brennan, Intermetallics, 10 (2002), pp. 1163-1166.
[60] R.D. Conner, Y. Li, W.D. Nix, W.L. Jonson, Acta Mater, 52 (2004), pp. 2429-2434.
[61] J. Schroers, W.L. Johnson, Phys. Rev. Lett., 93 (2004), 255506.
[62] W.H. Jiang, G.J. Fan, H. Choo, P.K. Liaw. Materials letters, (2006), in press.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top