【1】H. L. Huang and N. J. Ho, The observation of dislocation reversal in front of crack tips of polycrystalline copper after reducing maximum load, Mater. Sci. and Eng., A345, 215-222 (2003)
【2】 H. L. Huang, A study of dislocation evolution in polycrystalline copper during low cycle fatigue at low strain amplitudes, Mater. Sci. and Eng., A342, 38-43 (2003).
【3】 張綺惠, 純銅內差排組織在疲勞行為下的逆演化, 國立中山大學材料科學研究所碩士論文 (2003).【4】 E. E. Laufer and W. N. Roberts, Dislocation Structures in Fatigue Copper Single Crystals, Philosophical Magazine, 10, 883-885 (1964).
【5】 E. E. Laufer and W. N. Roberts, Dislocation and Persistent Slip Band in Fatigue Copper, Philosophical Magazine, 14, 65-78 (1966).
【6】 S. J. Basinski, Z. S. Basinski and A. Howie, Early Stages of Fatigue in Copper Single Crystals, Philosophical Magazine, 19, 899-924 (1969).
【7】 A. T. Winter, Nucleation of Persistent Slip Band in Cyclically Deformation Copper Crystals, Phil. Mag., 37, 457-463 (1978).
【8】 D. Kuhlmann-Wilsdorf and C. Lair, Dislocations Behavior in Fatigue, Mater. Sci. and Eng., 27, 137-156 (1977).
【9】 D. Kuhlmann-Wilsdorf and C. Lair, Dislocations Behavior in Fatigue: Part Ⅱ.Friction Stress and Back stress as Inferred from an Analysis of Hysteresis Loops, Mater. Sci. and Eng., 37, 111-120 (1979).
【10】 D. Kuhlmann-Wilsdorf and C. Lair, Dislocations Behavior in Fatigue: Part Ⅲ.Properties of Loop Patch, Mater. Sci. and Eng., 39, 127-139 (1979).
【11】 D. Kuhlmann-Wilsdorf and C. Lair, Dislocations Behavior in Fatigue: Part Ⅳ.Quantitative Interpretation of Friction Stress and Back Stress from Hysteresis Loop, Mater. Sci. and Eng., 39, 231-345 (1979).
【12】 D. Kuhlmann-Wilsdorf and C. Lair, Dislocations Behavior in Fatigue: Part Ⅴ.Breakdown the Loop Patches and Formation Persistent Slip Band and of Dislocation Cells, Mater. Sci. and Eng., 46, 209-219 (1980).
【13】 D. Kuhlmann-Wilsdorf and C. Lair, Dislocations Behavior in Fatigue: Part Ⅵ.Variation in the localization of Strain in Persistent Slip Band, Mater. Sci. and Eng., 50, 127-136 (1981).
【14】 T. K. Lepisto, V. T. Kuokkala, P. O. Kettunen, Dislocation Arrangements in Cyclically Deformed Copper Single Crystal, Materials Science and Engineering, 81, 457-463 (1986).
【15】 N. F. Mott, A Theory of the Origin of Fatigue Cracks, Acta Metall., 6, 195-197 (1958).
【16】 Campbell Laird, Fatigue, Mater. Sci. and Eng., 25, 187 (1976).
【17】 U. Essmann, U. Gösele, and H. Mughrabi, A Model of Extrusions and Intrusions in Fatigue Metals Ⅰ.Pont- Defect Production and the Growth of Extrusions, Philosophical Magazine, 44, 405-426 (1981).
【18】 W. Liu, M. Bayerlein, H. Mughrabi, A. Day and P. N. Quested, Crystallographic Features of Intergranular Crack Initiation in Fatigue Copper Polycrystals, Acta Metal., 40, 1763-1771 (1992).
【19】 H. Purcell and J. Weertman, Transmission Electron Microscopy of the Crack Region of Fatigued Copper Single Crystals, Metall. Trans., 4 , 349-353 (1973).
【20】 H. Purcell and J. Weertman, Crack Tip Area in Fatigued Copper Single Crystals, Metall. Trans., 5, 1805-1809 (1974).
【21】 J. D. Ashton, O. T. Woo and B. Rasmaswami, Fatigue Deformation of Copper Single Crystals Containing Noncoherent Cobalt Particles, Metall. Trans. Communication, 6A, 1957-1959 (1975).
【22】 黃興祿, 多晶銅之疲勞裂痕起始與不同裂痕成長速率下之裂痕尖端微結構研究, 國立中山大學材料科學研究所博士論文(1997).【23】 C. D Liu and M. N. Bassim, Configuration of loop patch at low strain amplitude in polycrystalline copper, Philosophical Magazine A, Vol.70, 591-605 (1994).
【24】 Robert E. Reed-Hill, Reza Abbaschian, Physical Metallurgy Principles (1994).
【25】 Marc Andre Meyers, Krishan Kumar Chawla, Mechanical Behavior of Materials (1999).
【26】 David B. Williams and C. Barry Carter, Transmission Electron Microscopy Basics Diffraction Imaging Spectrometry (1996).
【27】 駱統,多晶銅之疲勞性質與組織研究, 國立中山大學材料科學研究所博士論文 (1996).