跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 09:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾柏倫
研究生(外文):Po- Lun Tseng
論文名稱:低能量離子束處理氮化鎵表面之金氧半結構電容-電壓分析
論文名稱(外文):The Capacitance-Voltage Study of the GaN MOS Structurewith Surface Treatment Using Low Energy Ion Beam
指導教授:杜立偉杜立偉引用關係
指導教授(外文):Li Wei Tu
學位類別:碩士
校院名稱:國立中山大學
系所名稱:物理學系研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:86
中文關鍵詞:氮化鎵電容-電壓
外文關鍵詞:GaNC-V
相關次數:
  • 被引用被引用:1
  • 點閱點閱:163
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文主要探討以低能量離子束處理氮化鎵(GaN)表面之金氧半結構電容-電壓特性分析,我們把用來蒸鍍光學薄膜的E-Beam蒸鍍系統和離子束輔助沉積系統(Ion beam assisted deposition system)應用在我們的研究上,在蒸鍍SiO2之前我們先在E-Beam蒸鍍系統的真空腔中用低能量Ar離子做不同時間的表面處理,希望藉此來降低界面態密度並探討其對電容-電壓特性的影響。
我們量測了高頻電容-電壓曲線、遲滯曲線(Hysteresis)、不同閘極電壓掃描延遲時間(delay time)比較、元件各參數的計算,我們發現高頻電容-電壓曲線皆有深層空乏的現象並有遲滯現象的發生,經由估算我們發現短時間低能量離子束表面處理確實會降低界面態密度,但長時間反而會破壞表面。
最後我們附上低能量離子束處理矽(Si)表面之金氧半結構電容-電壓特性分析,以及初步的氮化銦(InN)金氧半結構電容-電壓特性分析。
In this study, we discussed the capacitance-voltage characteristics of the GaN MOS structure with surface treatment using low energy ion beam prior to the oxide deposition. We used the E-Beam evaporator which was equipped with the ion beam assisted deposition system that originally used for optical thin film deposition. Before depositing SiO2 the surface was treated by low energy Ar+
with different processing time inside the vacuum chamber around 10-6 torr. The purpose was to reduce the density of interface states and to explore the influence of C-V characteristics of the GaN MOS structure.
We have measured the high frequency C-V curve, hysteresis, and also varied the delay time while measuring. Based on the measuring results, some useful parameters of the device were obtained. Found that the deep depletion
phenomenon and hysteresis were easy seen in high frequency C-V measurement. To lower the interfacial states of the sample and shorten the processing time of the low energy ion beam treatment yielded the better result.But the surface was easily damaged when the processing time was prolonged.At last we added the capacitance-voltage study of the Si MOS structure with surface treatment using low energy ion beam, and the capacitance-voltage study of the InN MOS structure.
目 錄

第一章 導論
1-1 研究背景 …………………………………………… 1
1-2 研究目的 …………………………………………… 4

第二章 實驗相關原理
2-1 金氧半二極體
2-1-1金氧半二極體結構 …………………… 5
2-1-2理想金氧半二極體 ………………… 6
2-1-3非理想金氧半二極體 ………………… 15
2-1-4 MOS結構公式計算 …………………… 17
2-2 界面態密度(Density of Interface States, Dit)
2-2-1界面態密度對MOS的影響 ……………… 20
2-2-2界面態密度的估算 …………………… 22
2-3 遲滯(Hysteresis) C-V曲線 …………………… 24

第三章 實驗儀器
3-1 The C-V measurement system ………………… 26
3-2 E-Beam evaporation system • ………………… 28
3-3 Thermal evaporation system ………………… 29
3-4 Ion-beam assisted deposition system ……… 31
第四章 樣品備製與實驗架構
4-1 樣品基本參數 ………………………………… 33
4-2 樣品製作流程 ………………………………… 34
4-3 樣品列表 ……………………………………… 38
4-4 實驗架構 ……………………………………… 39
第五章 實驗結果與分析
5-1 C-V 特性曲線 ………………………………… 40
5-2 實驗各參數的計算 ……………………………… 55
第六章 結論 ………………………………………… 65
參考文獻 …………………………………………………… 66
附錄A ………………………………………………………… 68
附錄B ………………………………………………………… 74
Reference

1.H. C. Casey, Jr. G. G. Fountain and R. G. Alley, B. P. Keller andSteven P. DenBaars, Appl. Phys. Lett. 68, 1850 (1996)

2.S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Appl. Phys. Lett. 73, 809 (1998)

3.B. Gaffey, L. J. Guido, X. W. Wang and T. P. Ma, IEEE
Transactions on Electron Devices. 48, 458 (2001).

4.L. W. Tu, W. C. Kuo, K. H. Lee, P. H. Tsao, C. M. Lai, A. K. Chu and J. K. Sheu, Appl. Phys. Lett. 77, 3788 (2000).

5.L. W. Tu, P. H. Tsao, K. H. Lee, Ikai Lo, S. J. Bai, C. C. Wu, K. Y. Hsieh and J. K. Sheu, Appl. Phys. Lett. 79, 4589 (2000).

6.T. Hashizume, E. Alekseev, D. Pavlidisb, K. S. Boutros and J.Redwing, J. Appl. Phys. 88, 1983 (2000).

7.D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho,and D. H. Shin and C. H. Lee and K. S. Chung, Appl. Phys. Lett. 80, 446 (2002)

8.M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu and M. Hong, Appl. Phys. Lett. 87, 252104 (2005)

9.M. Hong, M. Passlack, J. P. Mannerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, J. Vac. Sci. Technol. B 14, 2297 (1996).

10.M. Passlack, M. Hong, J. P. Mannerts, J. Kwo, R. L. Opila, S. N. G. Chu, Chu, N. Moriya, and F. Ren, IEEE. Trans. Electron Devices 44. 214 (1997).

11.H. C. Casey, Jr., G. G. Fountain and R. G. Alley, B. P. Keller and Steven P. DenBaars, Appl. Phys. Lett. 68, 1850 (1996)

12.E. H. NICOLLIAN, J. R. BREWS, ”MOS (Metal Oxide
Semiconductor) Physics and Technology, J. Wiley and sons, New York (1982)

13.Dietek K. Schroder “ SEMICONDUCTOR MATERIAL AND DEVICE CHARACTERIZATION” 2nd edition, J. Wiley and sons, New York (1998).

14.Keithley Instrument, Inc

15.H. T. Lue, C. Y. Liu, C. Y. Tseng, IEEE Electron Device Lett. 23, 553 (2002)

16.D. J. Fu, Y. H. Kwon, T. W. Kang, C. J. Park, K. H. Baek, H. Y. Cho,and D. H. Shin and C. H. Lee and K. S. Chung, Appl. Phys. Lett.80, p.446 (2002)

17.T. S. Lay, W. D. Liu, M. Hong, J. Kwo and J. P. Mannaerts, , Electronics Letters.37, 595 (2001)

18.S. M. Sze “PHYSICS OF SEMICONDUCTOR DEVICE” 2nd edition, J. Wiley and sons, New Jersey (1981)

19.半導體製程技術導論 Hong Xiao著, 羅正忠 張鼎張 譯(二版)歐亞書局
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top