跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/09 09:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張殷豪
研究生(外文):Yin-hao Chang
論文名稱:海生搖蚊Pontomyiaoceana半月羽化週律的週期機制
論文名稱(外文):Period Mechanism of Semilunar Eclosion Rhythm of the Marine Midge Pontomyia oceana
指導教授:宋克義宋克義引用關係
指導教授(外文):Keryea Soong
學位類別:碩士
校院名稱:國立中山大學
系所名稱:海洋生物研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:49
中文關鍵詞:羽化半月週期海生搖蚊
外文關鍵詞:Pontomyia oceanaEclosionSemilunarPeriod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
生物的月週期純粹是外在環境造成或是有內生性週律參與?如果是內生性的,那麼週期是如何調控的?有可能是獨立的一個生物時鐘計算30天時間,或是它與近日週律有關,實際在計算大約30個日週期?本研究主要探討海生搖蚊P. oceana在野外的環境中,半月週期同步羽化的機制。先前已知改變全期的日週期長短(period),對受精至羽化所需時間只有50﹪效果,所以搖蚊應該不是完全計算時間或是計算日數,而是由兩者混合組成,因此有兩個可能:羽化週期前半是計算時間,後半是計算日數;相對假設是羽化週期前半是計算日數,後半是計算時間,我們的實驗在野外環境採同一天的受精卵,以人工飼養方式並改變前半期或後半期近日週期的長短(period),觀察各組羽化時間,來驗証到底月/月週期是如何調控的,結果隨處理後半期近日週期長短,造成百分之百的反應在羽化時間上,而且由羽化所需時間與給予的近日週期迴歸分析,得知第一高峰斜率14.8與第二高峰斜率29.4之間相差14.6,此接近15的數字即為搖蚊半月週期計數的近日週期數目,這是在生物上第一次發現這樣的計時機制。在夜光方面也證實其不但有集中效果,且能相移(phase shift)羽化週期,每延後一天加入羽化時間跟著延後0.52天。在不同溫度處理下,Q10約為1.18,此半月周期計時機制有溫度補償現象,顯然可不受季節影響。
We studied the eclosion rhythm of the marine midge Pontomyia oceana in southern Taiwan. The lunar/semilunr rhythm is known to be endogenous since it persists under continous light or dark conditions. In this study, we discovered that the period of the eclosion rhythm is about 15 days, although the midges have to spend an additional 15 days in the beginning of their lives before entering the eclosion rhythm. The period of the semilunrar eclosion rhythm is controlled by counting cycles of endogenous circadian rhythms which in term was entrainable by external light-dark (LD) cycles. We demonstrated this by modifying the period of LD cycles in different parts of their life histories with or without the entraining factor and then observing the ecolsion times in the laboratory. Night light can entrain the semilunar eclosion rhythm; we discovered that the cue and the eclosion are in the same phase of the semilunar rhythm but with a full cycle of shift. Temperature compensation in period control is demonstrated in this species. Q10 values close to 1 is found between 24 to 30°C in the laboratory.
壹、前言…………………………………………………………………1
貳、材料與方法…………………………………………………………5
參、結果…………………………………………………………………8
肆、討論………………………………………………………………11
參考文獻………………………………………………………………15
表………………………………………………………………………19
圖………………………………………………………………………20
附表……………………………………………………………………33
李品賢,1999,溫度對海生搖蚊Pontomyia oceana同步羽化之影響與其羽化週期之相關研究。中山大學碩士論文,高雄,台灣。
李怡蓁,2002,海生搖蚊Pontomyia oceana羽化近半月週期集中的機制。中山大學碩士論文,高雄,台灣。
呂儀潔,2001,海生搖蚊Pontomyia oceana半月同步羽化的機制。中山大學碩士論文,高雄,台灣。
陳如茵,2000,海生搖蚊Pontomyia oceana日內同步羽化的機制。中山大學碩士論文,高雄,台灣。
Carmichael, M. S., and I. Zucker. 1986. Circannual rhythm of ground squirrels: a test of the frequency demultiplication hypothesis. Journal of Biological Rhythms 1:277-284.
Cheng, L., and J. D. Collins. 1980. Observations on behavior, emergence and reproduction of the marine midges Pontomyia (Diptera: Chironomidae). Marine Biology 58: 1-5.
Enright, J. T. 1970. Ecological aspects of endogenous rhythmicity. Annual Review of Ecology and Systematics 1: 221-238.
Foster, R. G., and K. Leon 2003. Rhythm of Life : The Biological Clocks that Control the Daily Lives of Every Living Thing. Profile Books Ltd in Great Britain. pp163-164.
Gwinner, E. 1981. Circannual rhythms: their dependence on the circadian system. In: Follett BK, Follett DE (eds) Biological clocks in seasonal reproductive cycles. Wright, Bristol, pp 153-169.
Heliovaara, K., R. Vaisanen, and C. Simon. 1994. Evolutionary ecology of periodical insects. Trends in Ecology and Evolution 9: 475-480.
Hsiao, S. M., M. S. Greeley Jnr, and R. A. Wallace. 1994. Reproductive cycling in female Fundulus heteroclitus. Biological Bulletin 186:271-284.
Karban, R.,C. A. Black, and S. A. Weinbaum. 2000. How 17-year cicadas keep track of time. Ecology Letters 3:253-256.
Kubota, T., and M. Tomari. 1998. Reproduction in the apodid sea cucumber Polycheira rufescens: Semilunar spawning rhythm and sex change. Journal of the Marine Biological Association of the United Kingdom. 78: 249-267.
Mills, S. C., M. Peyrot-Clausade, and M. F. Fontaine. 2000. Ingestion and transformation of algal turf by Echinometra mathaei on Tiahura fringing reef (French Polynesia). Journal of Experimental Marine Biology and Ecology 254:71-84.
Mizushima, N., Y. Nakashima, and T. Kuwamura. 2000. Semilunar spawning cycle of the humbug damselfish Dascyllus aruanus. Journal of Ethology 18:105-108.
Morgan, S. G. 1995. The timing of larval release. pp. 157-186 in Larry R.McEdward, [editor]. Ecology of marine invertebrate larvae. CRC Press, Florida.
Mrosovsky, N. 1978. Circannual cycles in hibernators. In strategies in cold: Natural torpidity and thermogenesis, L. C. H. Wang and J. W. Hudson, eds., pp. 21-65, Academic Press, New York.
Munoz-Delgado, J., et al. 2005. Presence of a circadian rhythm in the spider monkey’s (Ateles geoffroyi) motor activity. Biological Rhythm Research 36:115-121.
Neumann, D. 1976. Entrainment of a semilunar rhythm. Biological Rhythms in the Marine Environment ed.:De Coursey PJQ, pp 115-127.
Neumann, D. 1985. Circadian range of entrainment in the semilunar eclosion rhythm of the marine insect Clunio marinus. Journal of Insect Physiology 31: 549-557.
Neumann, D. 1988. Temperature compensation of circasemilunar timing in the intertidal insect Clunio. Journal of Comparative Physiology A 163: 671-676.
Nisimura, T. and H. Numata. 2002. Evaluation of the frequency demultiplication hypothesis of circannual pupation rhythm in the varied carpet beetle Anthrenus verbasci (Coleoptera : Dermestidae). Biological Rhythm Research 33: 255-260.
Nunes, S., et al. 1998. Body fat and time of year interact to mediate dispersal behaviour in ground squirrels. Animal Behaviour 55:605-614.
Omori, K. 1995. The adaptive significance of a lunar or semi-lunar reproductive cycle in marine animals. Ecological Modelling 82: 41-49.
Rahman, Md. S., et al. 2004. Influence of light-dark and lunar cycles on the ocular melatonin rhythms in the seagrass rabbitfish, a lunar-synchronized spawner. Journal of Pineal Research 37:122-128.
Schumann, D. M., et al. 2005. Circadian rhythm of locomotor activity in the four-striped field mouse,Rhabdomys pumilio:A diurnal African rodent. Physiology and Behavior 85: 231-239.
Soong, K., G. F. Chen, and J.R. Cao. 1999. Life history studies of the flightless marine midges Pontomyia spp. (Diptera: Chironomidae). Zoological Studies 38: 466-473.
Soong, K. and Y. Leu. 2005. Adaptive mechanism of the bimodal emergence dates in the intertidal midge Pontomyia oceana. Marine Ecology Progress Series 286: 107-114.
Soong, K., J. Chen, and J.Z. Tsao (in press) Adaptation for accuracy or for precision? Diel emergence timing of the intertidal insect Pontomyia oceana (Chironomidae). Marine Biology DOI 10.1007/s00227-006-0364-7.
Takegaki, T. 2000. Monogamous mating system and spawning cycle in the gobiid fish, Amblygobius phalaena (Gobiidae). Environmental Biology of Fishes 59:61-67.
Yamahira, K. 1997. Hatching success affects the timing of spawning by the intertidally spawning puffer Takifugu niphobles. Marine Ecology Progress Series 155: 239-248.
Yund, P. O. 2000. How severe is sperm limitation in natural populations of marine free-spawners? Trends Ecological Evolution 15: 10-13.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top